Общая модель потребительского выбора

Пусть задана целевая функция предпочтения потребителя (где - количество -го блага), вектор цен и доход . Записав бюджетное ограничение и ограничения на неотрицательность, получаем задачу [9]:

;

при условиях

.

Будем, как и ранее, считать, что неотрицательность переменных обеспечивается свойствами целевой функции и бюджетного ограничения. В этом случае можно записать функцию Лагранжа и исследовать ее на безусловный экстремум. Функция Лагранжа будет иметь матричный вид

.

Необходимые условия экстремума - равенство нулю частных производных: для всех i от единицы до n ; .

Отсюда следует, что для всех i и в точке локального равновесия выполняется равенство . Или в другой форме: .

Это означает, что дополнительная полезность, приходящаяся на дополнительную единицу денежных затрат, в точке оптимума одинакова по всем видам благ.








Дата добавления: 2015-04-21; просмотров: 1114;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.