Вероятностно-статистические модели в экономике
Достовернымназывается событие, которое в результате опыта непременно должно произойти. Здесь . Невозможнымназывается событие, которое в результате опыта не может произойти: . Вероятность любого события заключается между нулем и единицей: .
Несколько событий в данном опыте образуют полную группу, если в результате опыта должно появиться хотя бы одно из них. Несколько событий называются несовместными в данном опыте, если никакие два из них не могут появиться вместе. Несколько событий называются в данном опыте равновозможными, если объективная возможность их появления одинакова.
Если события в данном опыте несовместны, равновозможны и образуют полную группу, то они называются случаями или шансами. При этом вероятность события равна отношению числа m случаев, благоприятствующих появлению этого события, к общему числу случаев n:
При решении геометрических задач вероятность того или иного события определяется отношением геометрического размера (длины, площади, объема, угла и т.п.), благоприятствующего появлению рассматриваемого события, к общему размеру.
Непосредственный расчет вероятности по указанной выше формуле в случае симметрии возможных исходов часто включает элементы комбинаторики.
Размещением изnэлементов поm называется упорядоченная выборка элементов. Если среди n элементов все различные, то число размещений из n элементов по m определяется соотношением:
Размещениями с повторениями называют упорядоченные последовательности, составленные из n элементов по m, где некоторые из элементов (или все) могут оказаться одинаковыми. Число размещенийс повторениями из n элементов по m определяется соотношением .
При m = n размещения называются перестановками, т.е. различные перестановки отличаются только порядком элементов. Число перестановок из n элементов определяется формулой
Сочетанием изnэлементов поm называется выборка m элементов без учета их порядка, т.е. различные выборки отличаются самими элементами.
Если среди n элементов все различные, то число сочетаний определяется соотношением Отметим, что .
Последним свойством удобно пользоваться, когда .
Количество различных способов разбиения n элементов на m групп с числом элементов в -й группе (перестановки с повторениями) определяется по формуле
.
Пусть n -элементное множество является суммой множеств , число элементов которых равно соответственно , И пусть - m-элементное подмножество множества , содержащее элементов из , элементов из , ..., элементов из . Число способов, которыми можно выбрать такое множество В из А (множества неупорядоченные), равно .
Суммой нескольких событий называется событие, состоящее в появлении хотя бы одного из этих событий. Произведениемнескольких событий называется событие, состоящее в совместном появлении всех этих событий.
Событие A называется независимым от события В, если вероятность события A не зависит от того, произошло событие В или нет.
Событие A называется зависимым от события B, если вероятность события меняется в зависимости от того, произошло событие В или нет.
Если событие A не зависит от события В, то и событие В не зависит от события A.
Вероятность события A, вычисленная при условии, что имело место другое событие B, называется условной вероятностью события A и обозначается .
Условие независимости события A от события В можно записать в виде , а условие зависимости соотношением .
Событие называется противоположным событию A, если оно состоит в непоявлении события A.
Вероятность суммы любого числа совместных событий определяется зависимостью
где суммы распространяются на различные сочетания индексов и т.д.
В частном случае, вероятность суммы двух совместных событий , где - произведение событий и .
В общем случае для несовместныхсобытий имеем соотношение
Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое имело место: .
Для двух независимых событий имеем .
Вероятность произведения нескольких событий равна произведению вероятностей этих событий, причем вероятность каждого следующего по порядку вычисляется при условии, что все предыдущие имели место:
.
Вероятность произведения независимых событий равна произведению вероятностей этих событий:
Если об обстановке (условиях) опыта можно сделать n исключающих друг друга предположений (гипотез) и если событие может появиться только с одной из этих гипотез, то вычисляется по формуле полной вероятности
где - вероятность гипотезы ;
- условная вероятность события A при гипотезе .
Если до опыта вероятности гипотез были , а в результате опыта появилось событие A, то с учетом этого факта условные вероятности гипотез вычисляются по формуле Байеса:
Формула Байеса дает возможность "пересмотреть" вероятности гипотез с учетом полученного результата опыта. Если после опыта, заканчивающегося появлением события A, производится еще один опыт, в котором может появиться или не появиться событие , то условная вероятность этого последнего события вычисляется по формуле полной вероятности, в которую подставлены не прежние вероятности гипотез , а новые :
Опыты называются независимыми, если вероятность исхода (результата) каждого опыта не зависит от того, какие исходы имели другие опыты. Независимые опыты могут проводиться как в одинаковых условиях, так и в различных. В первом случае вероятность появления какого-то события A во всех опытах одна и та же, во втором случае она меняется от опыта к опыту.
Если производится n независимых опытов в одинаковых условиях, причем в каждом из них с вероятностью может появиться событие A, то вероятность того, что событие A произойдет в этих n опытах ровно m раз, выражается формулой Бернулли:
Это биномиальное распределение вероятностей.
Вероятность хотя бы одного появления события A в n независимых опытах в одинаковых условиях равна
.
Если производится n независимых опытов в различных условиях, причем вероятность события А в опыте равна , то вероятность того, что событие появится в этих n опытах ровно раз, равна коэффициенту при в разложении по степеням производящей (вычислительной, вспомогательной) функции .
Вероятность хотя бы одного появления события A в n независимых опытах в различных условиях равна .
Для любых условий опыта .
Вероятность того, что в n опытах событие А появится не менее раз, выражается формулой: .
Наивероятнейшее число наступлений события А в серии из n опытов удовлетворяет неравенствам . 3десь - вероятность наступления события А в одном опыте.
Число называется наивероятнейшим числом наступления события А в n испытаниях, если при .
Если не является целым числом, то двойное неравенство определяет лишь одно наивероятнейшее значение . Если же целое число, то имеются два наивероятнейших значения: .
Отношение числа опытов, в которых появилось событие А, к общему числу произведенных опытов, называется частотой события А или его статистической вероятностью .
Случайной величиной (СВ) называется величина, которая в результате опыта может принять то или иное значение, неизвестно заранее, какое именно.
Дискретной (прерывной) называется СВ, принимающая отдельные друг от друга значения, которые можно пронумеровать. Возможные значения непрерывных СВ не могут быть заранее перечислены и непрерывно заполняют некоторый промежуток. СВ полностью описывается своим законом распределения.
Законом распределения СВ называется всякое соотношение, устанавливающее связь между возможными значениями СВ и соответствующими им вероятностями. Закон распределения может иметь три формы.
1.Рядом распределения дискретной СВ Х называется таблица, где перечислены возможные (различные) значения этой СВ с соответствующими им вероятностями . При этом
Графическое изображение ряда распределения называется многоугольником(полигоном) распределения.
2.Функцией распределения СВ Х называется функция , выражающая вероятность того, что Х примет значение, меньшее, чем какое-то заданное конкретное значение : .
Функцию распределения иногда называют также интегральной функцией распределения или интегральным законом распределения. Функция распределения - универсальная характеристика СВ. Она существует для всех СВ: как дискретных, так и непрерывных.
Свойства функции распределения.
1) Функция есть неубывающая функция своего аргумента, т.е. при имеет место соотношение .
2)
3) Для дискретных СВ есть разрывная ступенчатая функция, непрерывная cлева.
4) Если случайная величина X непрерывна, то P(X = a) = 0 и можем записать P(a < X < b) = P(a Ј X < b) = P(a < X Ј b) = P(a Ј X Ј b) = F(b) - F(a).
Величина , определяемая равенством (где р задается), называется квантилем порядка р. Квантиль порядка называется медианой, квантили порядка 0.1, 0.2, ..., 0.9 называются децилями, а квантили порядка 0.25, 0.5, 0.75 называются квартилями.
Если функция распределения везде непрерывна и имеет производную, то СВ называется непрерывной в узком смысле слова или просто непрерывной. Если функция на некоторых участках непрерывна, а в отдельных точках имеет разрывы, СВ называется смешанной.
3.Функция плотности распределения есть предел отношения вероятности попадания СВ в интервал к ширине этого интервала при ее стремлении к нулю:
.
Функцию называют также плотностью вероятностей, кривой плотности распределения. Плотность распределения существует только для непрерывных СВ и имеет следующие основные свойства:
;
Каждая форма закона распределения (ряд распределения, функция распределения, плотность распределения) представляет собой некоторую функцию и полностью описывает СВ с вероятностной точки зрения. Часто на практике требуется существенные сведения относительно СВ выразить в сжатой форме с помощью числовых (точечных) характеристик.
Основными числовыми характеристиками СВ являются следующие.
1. Математическое ожидание СВ Х это ее среднее значение, которое вычисляется по формулам (соответственно, для дискретной и непрерывной СВ):
2. МодаСВ - ее наиболее вероятное значение для дискретной величины, а для непрерывной величины это то значение, в котором плотность распределения вероятностей максимальна.
3. Медиана случайнойвеличины Х-такое ее значение , для которого , т.е. одинаково вероятно, окажется ли СВ меньше или больше . Геометрически медиана - это абсцисса точки, в которой ее площадь, ограниченная функцией плотности распределения, делится пополам.
4. Дисперсией СВ называется математическое ожидание квадрата соответствующей центрированной величины (центрированной СВ называется разность между СВ Х и ее математическим ожиданием):
.
5. Средним квадратическим отклонением СВ Х называется положительный корень из дисперсии .
6. Начальным моментом k - го порядка величины Х называется математическое ожидание k -й степени этой СВ. Для дискретной и непрерывной СВ этот момент вычисляется, соответственно, по формулам:
.
7. Центральным моментом к-го порядка СВ Х называется математическое ожидание к-й степени центрированной СВ Х:
.
Математическое ожидание СВ Х есть ее первый начальный момент, а дисперсия - второй центральный.
Второй и третий центральные моменты выражаются через начальные моменты зависимостями:
.
8. Третий центральный момент служит для характеристики асимметрии(или скошенности) распределения. Если распределение симметрично относительно математического ожидания (или в механической интерпретации, масса распределена симметрично относительно центра тяжести), то все моменты нечетного порядка (если они существуют) равны нулю. Коэффициент асимметрии (или просто асимметрия) определяется зависимостью .
9. Четвертый центральный момент служит для характеристики "крутости", т.е. островершинности или плосковершинности распределения. Это свойство распределения описываются с помощью так называемогоэксцесса:
Для нормального распределения . Кривые, более островершинные по сравнению с нормальным законом, обладают положительным эксцессом; кривые более плосковершинные - отрицательным эксцессом.
Дата добавления: 2015-04-21; просмотров: 1458;