Метод симметричных составляющих. Метод симметричных составляющих относится к специальным методам расчета трехфазных цепей и широко применяется для анализа несимметричных режимов их работы
Метод симметричных составляющих относится к специальным методам расчета трехфазных цепей и широко применяется для анализа несимметричных режимов их работы, в том числе с нестатической нагрузкой. В основе метода лежит представление несимметричной трехфазной системы переменных (ЭДС, токов, напряжений и т.п.) в виде суммы трех симметричных систем, которые называют симметричными составляющими.Различают симметричные составляющие прямой, обратнойи нулевойпоследовательностей, которые различаются порядком чередования фаз.
Симметричную систему прямой последовательности образуют (см. рис. 1,а) три одинаковых по модулю вектора и со сдвигом друг по отношению к другу на рад., причем отстает от , а - от .
Введя, оператор поворота , для симметричной системы прямой последовательности можно записать
.
Симметричная система обратной последовательности образована равными по модулю векторами и с относительным сдвигом по фазе на рад., причем теперь отстает от , а - от (см. рис. 1,б). Для этой системы имеем
.
Система нулевой последовательности состоит из трех векторов, одинаковых по модулю и фазе (см. рис. 1,в):
.
При сложении трех указанных систем векторов получается несимметричная система векторов (см. рис. 2).
Любая несимметричная система однозначно раскладывается на симметричные составляющие. Действительно,
; | (1) |
; | (2) |
. | (3) |
Таким образом, получена система из трех уравнений относительно трех неизвестных , которые, следовательно, определяются однозначно. Для нахождения сложим уравнения (1)…(3). Тогда, учитывая, что , получим
. | (4) |
Для нахождения умножим (2) на , а (3) – на , после чего полученные выражения сложим с (1). В результате приходим к соотношению
. | (5) |
Для определения с соотношением (1) складываем уравнения (2) и (3), предварительно умноженные соответственно на и . В результате имеем:
. | (6) |
Формулы (1)…(6) справедливы для любой системы векторов , в том числе и для симметричной. В последнем случае .
В заключение раздела отметим, что помимо вычисления симметричные составляющие могут быть измерены с помощью специальных фильтров симметричных составляющих, используемых в устройствах релейной защиты и автоматики.
Дата добавления: 2015-04-19; просмотров: 658;