Последовательностей.
Пусть имеем участок цепи на рис. 6. Для фазы А этого участка можно записать
. | (9) |
Тогда для симметричных составляющих прямой и обратной последовательностей с учетом, того, что , на основании (9) имеем
.
Отсюда комплексные сопротивления прямой и обратной последовательностей одинаковы и равны:
.
Для симметричных составляющих нулевой последовательности с учетом равенства соотношение (9) трансформируется в уравнение
,
откуда комплексное сопротивление нулевой последовательности
.
В рассмотренном примере получено равенство сопротивлений прямой и обратной последовательностей. В общем случае эти сопротивления могут отличаться друг от друга. Наиболее типичный пример – различие сопротивлений вращающейся машины для токов прямой и обратной последовательностей за счет многократной разницы в скольжении ротора относительно вращающегося магнитного поля для этих последовательностей.
Дата добавления: 2015-04-19; просмотров: 608;