Закон Максвелла для распределения молекул по скоростям.

Распределение большого числа молекул идеального газа, находящегося в состоянии термодинамического равновесия, по модулям скоростей подчиняется закону распределения Максвелла. Для получения дифференциального распределения Максвелла будем искать число частиц, скорости которых лежат в очень малом интервале d вблизи некоторой скорости . Пусть dn – число частиц в единице объёма, скорости которых лежат в интервале от до d Это число пропорционально интервалу скоростей d , а также пропорционально числу частиц в единице объёма. Можно записать так:

, (7-10)

где - плотность вероятности скорости, которая означает долю частиц в единице объёма, скорости которых лежат в единичном интервале скоростей вблизи скорости  Тогда доля частиц, скорости которых лежат в интервале от до  d может быть найдена как

(7-11)

Поскольку число частиц, даже в малых объёмах вещества, очень велико, то имеет смысл вероятности того, что любая частица идеального газа в единице объёма имеет скорость, лежащую в интервале скоростей от до  d Распределение Максвелла в дифференциальной форме имеет вид:

(7-12)

Вид дифференциального распределения Максвелла при разных значениях температуры представлен на рис.7.6. Площадь заштрихованной криволинейной трапеции численно равна доле частиц, скорости которых лежат в интервале от до  d Скорость , соответствующая максимуму плотности вероятности , называется наиболее вероятной скоростью. При выполняется равенство . Отсюда получаем, что наиболее вероятная скорость равна:

или (7-13)

 

 

В отличие от распределения Гаусса, распределение Максвелла не симметрично относительно абсциссы максимума функции распределения. Это обусловлено наличием в формуле (7-12) квадрата модуля скорости, кроме экспоненты. При малых скоростях преобладает вклад , поэтому при этих скоростях вид кривой дифференциального распределения (рис.7-6) близок к параболе, при основной вклад вносит экспонента, которая убывает гораздо быстрее, чем растёт парабола. Площадь фигуры под кривой ( ) на рис.7.6 равна единице (условие нормировки) и выражает факт существования молекулы. При возрастании температуры увеличивается наиболее вероятная скорость, а плотность вероятности, соответствующая этой скорости, уменьшается, но площадь фигуры под кривой остаётся неизменной. Интегральное распределение Максвелла показано на рисунке 7.7. Здесь N1/N – доля частиц, скорости которых превышают скорость .

Таким образом, распределение Максвелла – это равновесное распределение идеального газа. Оно устанавливается благодаря столкновениям молекул, которые приводят систему к тепловому равновесию.

Распределение Максвелла позволяет определить несколько средних скоростей: наиболее вероятную скорость, среднюю арифметическую скорость и среднюю квадратичную скорость.

Скорость , соответствующая максимуму плотности вероятности , называют наиболее вероятной скоростью. Для идеального газа, находящегося в состоянии термодинамического равновесия при температуре Т, она определяется из условия и равна или .

Средняя квадратичная скорость определяется как квадратный корень из среднего квадрата скорости и связана со средней кинетической энергией поступательного движения молекул. Чтобы найти её с помощью распределения Максвелла, нужно определить отношение суммы квадратов скоростей молекул, содержащихся в единице объёма, к числу молекул в этом объёме: .

Для идеального газа, находящегося в состоянии термодинамического равновесия при температуре Т, она равна

или (7-14)

Среднюю арифметическую скорость определяют как отношение суммы всех скоростей всех молекул в единице объёма к числу молекул в единице объёма: .

Для идеального газа, находящегося в состоянии термодинамического равновесия при температуре Т , она равна :

. . (7-15)

Эти скорости мало отличаются друг от друга по своим численным значениям : .

Экспериментально равновесное распределение частиц по скоростям было обнаружено Штерном, Истерманом и Симпсоном в 1947 году.








Дата добавления: 2015-04-15; просмотров: 1201;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.