Преобразования сигнала

 

Для преобразования непрерывного сигнала в дискретный используется процедура, которая называется квантованием. Различают два вида квантования – по времени и по уровню.

 

Квантование по времени– это замена непрерывной (по времени и по уровню) функции x(t)

 

некоторым множеством непрерывных (по уровню) функций x(ti) ( i = {1,2,3,4}):

 

Очевидно, квантование по времени связано с потерей информации. В самом деле, дискретный сигнал не показывает, как ведет себя исходный сигнал в моменты времени, например, между t3 и t4. Иначе говоря, этот процесс связан с некоторой погрешностью ε, которая зависит от шага дискретизации Δt = ti – ti-1: при малых значениях шага дискретизации число точек замера высоко, и теряется мало информации; очевидно, картина обратная при больших шагах дискретизации. Погрешность квантования по времени ε в каждый момент времени t определяется по формуле:

ε(t) = x(t) – v(t),

где v(t) – функция восстановления, которая по дискретным значениям {x(ti)}восстанавливает x(t).

 

Виды квантования по времениразличаются по регулярности отсчетов:

· равномерный вид, когда Δt постоянно;

· неравномерный вид, когда Δt переменно, причем этот вид, в свою очередь, делится на подвиды:

· адаптивный, когда Δt меняется автоматически в зависимости от текущего изменения сигнала. Это позволяет увеличивать шаг дискретизации, когда изменения сигнала x(t) незначительны, и уменьшать – в противном случае;

· программируемый, когда Δt изменяется оператором или в соответствии с заранее выставленными условиями, например, в фиксированные моменты времени.

 

Квантование по уровню - это преобразование непрерывных (по уровню) сигналов x(ti), полученных в результате квантования по времени, в моменты отсчета ti в дискретные. В результате непрерывное множество значений сигнала x(ti) в диапазоне от xmin до xmax преобразуется в дискретное множество значений xkуровней квантования:

 

Шаг квантования Δx определяется по формуле:

Δx = xj – xj-1 .

Можно сказать, что квантование по уровню – это измерение сигнала. В самом деле, по последнему рисунку видно, что сигнал x(t1) составляет 0 уровней квантования (k = 0), а сигнал x(t4) – 2 уровня квантования (k = 2).

 

При квантовании по уровнюне всегда сигнал x(ti) совпадает с уровнем квантования (см. сигнал x(t2) на рисунке). В таком случае поступают одним из следующих способов:

1. x(ti) отождествляют с ближайшим значением (в нашем примере – с x2);

2. x(ti) отождествляют с ближайшим меньшим (или большим) значением. Тогда при отождествлении с ближайшим большим значением сигнал x(t2) отождествится с x2 независимо от того, насколько близко он к этому уровню квантования находится. При отождествлении с ближайшим меньшим значением сигнал x(t2) отождествится с x1 также независимо от того, насколько близко он к этому уровню квантования находится.

 

Очевидно, и при квантовании по уровню возникает погрешность квантования ε(xk):

ε(xk) = x(ti) - xk.

Погрешность квантования по уровню тем меньше, чем меньше шаг квантования.

 

Виды квантования по уровню:

1. равномерное, когда диапазон изменения сигнала разбивается на m одинаковых частей. Тогда, зная размер шага квантования, для представления xk достаточно знать число k.

2. неравномерное, когда диапазон изменения сигнала разбивается на m различных частей.








Дата добавления: 2015-03-03; просмотров: 703;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.