Типовое гармоническое воздействие. Частотные характеристики систем и звеньев.

Гармоническое воздействие :

x = Ахsinwt,

где Ах ¾ амплитуда; w¾ угловая частота.

Если на линейную систему или звено подать гарм-кие возд-вия, то на выходе также будет гармонический сигнал:

y = Аysin(wt+φ).

Амплитуда Аy будет зависеть от частоты входного сигнала, и разность фаз между входным и выходным сигналами будет зависеть от частоты входного сигнала. Таковы физические свойства систем и линейных звеньев.

Реакция системы (звена) на гармоническое воздействие характеризуется его частотными характеристиками.

Амплитудно-частотной характеристикой (АЧХ) называется зависимость отношения амплитуд выходного и входного гармонических сигналов от частоты в установившемся режиме:

.

Первый рисунок ниже

Где К- коэфф. передачи звена

Фазово-частотной характеристикой (ФЧХ) называется зависимость разности фаз j(w) между входным и выходным сигналами от частоты в установившемся режиме.

Возможный вид графиков АЧХ и ФЧХ

 
 

Частотная передаточная функция является комплексной функцией, поэтому:

W(jw) =Y(jw)/X(jw) = U(w) + jV(w) = A(w) e jj(w) .

где U(w) – действительная часть; V(w) – мнимая часть; A(w)- модуль функции; j(w) – аргумент функции

A(w)= под корнем U2(w)+V2(w)

j(w) = arctg V(w)/U(w)

Кроме того, строится совместная амплитудно-фазовая частотная характеристика (АФЧХ) в координатах U(w) и jV(w):

 
 

График АЧХ, построенный в логарифмическом масштабе, называют логарифмической амплитудной характеристикой (ЛАХ), график ФЧХ, построенный в логарифмическом масштабе, называют логарифмической фазовой характеристикой (ЛФХ).

Перевод значений АЧХ в значения ЛАХ осуществляется следующим образом:

L(w) = 20 lgA(w), дБ.

Единицей измерения логарф-ой амплитуды является децибел, а частоты – декада (дек), что соответствует увеличению частоты в 10 раз.

 








Дата добавления: 2015-02-28; просмотров: 2101;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.