Меры вариации
Как правило, о распределении нужно знать больше, чем могут показать меры среднего. Нужна, например, мера, которая может сказать, расположен ли пучок величин близко к их среднему или широко разбросан. Мера разброса величин относительно среднего называется мерой вариации.
Показатель вариации полезен как минимум в двух отношениях. Во-первых, он показывает репрезентативность среднего. Если вариация невелика, то известно, что отдельные величины будут близки к среднему. Если вариация большая, то такое среднее нельзя с большой уверенностью использовать в качестве репрезентативной величины. Предположим, что шьется партия готовой одежды без снятия конкретных мерок. Для этого полезно знать средний размер этой группы людей, но также важно знать и разброс их размеров. Зная вариацию, можно сказать, насколько должны варьироваться изготовляемые размеры.
Для иллюстрации посмотрим на данные рис. П3, где приведены частотные распределения показателей вступительных экзаменов для двух классов из 30 учащихся. В обоих классах средний показатель один и тот же — 75, но они очевидно различаются по степени вариации. Показатели всех учащихся из класса А расположены близко к среднему, тогда как показатели учащихся из класса Б разбросаны в широком диапазоне. Нужны какие-то меры, чтобы точнее определить, чем различаются эти распределения. Психологи часто используют три меры вариации: размах, дисперсия и стандартное отклонение.
Рис. П3. Пример разной вариации распределений.Как легко видеть, пучок показателей у класса А ближе к среднему, чем показатели класса Б, хотя само среднее в обоих классах идентично — 75. У класса А все показатели попадают между 60 и 89, причем большинство из них приходится на интервал от 70 до 79. У класса Б показатели распределены относительно равномерно по всему диапазону от 40 до 109. Это различие между двумя распределениями в разбросе можно оценить по показателю стандартного отклонения, которое у класса А меньше, чем у класса Б.
Чтобы упростить арифметические вычисления, предположим, что пять учащихся из каждого класса захотели поступить в колледж и что их суммарные оценки на вступительных экзаменах были такие:
Показатели учащихся из класса А:
73, 74, 75, 76, 77 (среднее = 75)
Показатели учащихся из класса Б:
60, 65, 75, 85, 90 (среднее = 75)
Теперь подсчитаем для этих двух выборок меры вариации.
Размах — это разброс между наивысшей и наинизшей величиной. Размах показателей у пяти учащихся из класса А равен 4 (от 73 до 77); размах показателей учащихся класса Б равен 30 (от 60 до 90).
Размах легче подсчитать, но дисперсия и стандартное отклонение используются чаще. Это более чувствительные меры вариации, поскольку они учитывают все величины, а не только крайние величины, как размах. Дисперсия показывает, насколько составляющие распределение величины отстоят от средней величины этого распределения. Чтобы вычислить дисперсию, сначала подсчитаем отклонения каждой величины (d) от среднего, вычтя из среднего каждую величину (табл. П3). Затем надо каждую разницу возвести в квадрат, чтобы не было отрицательных чисел. Наконец, эти отклонения складываются вместе и делятся на общее количество отклонений, давая в результате средний квадрат отклонения. Средний квадрат отклонения называется дисперсией. Проделав это с данными из рис. П3, мы обнаружим, что дисперсия у класса А равна 2,0, а у класса Б — 130. Очевидно, что у класса Б вариативность показателей значительно сильнее.
Таблица П3. Вычисление дисперсии и стандартного отклонения
Оценки Класса А (Среднее = 75)
d | d2 | |
77-75 | ||
76-75 | ||
75-75 | ||
74-75 | -1 | |
73-75 | -2 |
Сумма d2 = 10
Дисперсия = среднее по d2 = 10 / 5 = 2,0
Стандартное отклонение (σ) = = 1,4
Оценки Класса Б (Среднее = 75)
d | d2 | |
90-75 | ||
85-75 | ||
75-75 | ||
65-75 | -10 | |
60-75 | -15 |
Сумма d2 = 650
Дисперсия = среднее по d2 = 650 / 5 = 130
Стандартное отклонение (σ) = = 11,4
Неудобство дисперсии состоит в том, что она выражена в единицах измерения, возведенных в квадрат. Поэтому величина дисперсии, равная 2 у класса А, не означает, что его усредненные показатели отличаются от среднего на 2 пункта. Она показывает, что 2 — это результат усреднения возведенных в квадрат значений, на которые показатели отличаются от среднего. Чтобы получить меру отклонения, выраженную в первоначальных единицах измерения (в данном случае это количество единиц, набранных на экзамене), надо просто извлечь из дисперсии квадратный корень. Результат называют стандартным отклонением. Оно обозначается греческой буквой σ (сигма), используемой также в некоторых других статистических вычислениях, которые мы обсудим вкратце. Стандартное отклонение вычисляется по следующей формуле:
Пример вычисления стандартного отклонения.(табл. П3). Показатели выборок из двух классов представлены в виде, удобном для вычисления стандартного отклонения. На первом этапе вычитаем среднее из каждого показателя (среднее = 75 в обоих классах). В результате получаем положительные величины d для показателей, которые больше среднего, и отрицательные для тех, которые меньше его. Когда полученные величины будут возведены в квадрат, знак минус пропадет (следующая колонка в табл. П3). Возведенные в квадрат разности складываются и делятся на N — количество элементов выборки, в нашем случае N = 5. Извлекая квадратный корень, получаем стандартное отклонение. [В этом ознакомительном изложении мы везде будем использовать σ (сигма). Однако в научной литературе для обозначения стандартного отклонения выборки используется маленькая буква s, а через а обозначают стандартное отклонение для всей группы. Кроме того, при вычислении стандартного отклонения для выборки (s) сумма всех d2 делится не на N, а на N-1. В случае достаточно больших выборок, однако, использование N-1 вместо N мало влияет на величину стандартного отклонения. Для упрощения объяснений мы не будем различать здесь стандартное отклонение выборки и группы и используем для них одну и ту же формулу. Обсуждение этого момента см. в: Phillips (1992).]
Дата добавления: 2015-02-19; просмотров: 1422;