Шкалирование данных
Чтобы интерпретировать показатель, часто нужно знать, высокий он или низкий по отношению к другим показателям. Если человеку, сдающему водительский экзамен, требуется 0,500 сек, чтобы нажать на тормоз после сигнала опасности, как определить, быстро это или медленно? Считать ли, что студент сдал курс по физике, если его показатель на экзамене равен 60? Для ответа на такие вопросы надо вывести шкалу, с которой эти показатели можно сравнивать.
Ранжирование данных.Располагая показатели по рангу от высокого к низкому, мы получаем одну из таких шкал. Отдельный показатель интерпретируется по тому, на каком месте он располагается среди группы показателей. Например, курсанты военной академии Вест Пойнт знают, где они находятся в своем классе — возможно, 35-ми или 125-ми в классе из 400.
Стандартный показатель.Стандартное отклонение — удобная единица шкалирования, поскольку мы можем оценить, насколько далеко от среднего располагаются 1σ или 2σ (табл. П4). Величину произведения, в котором один сомножитель — стандартное отклонение, называют стандартным показателем. Многие шкалы, применяемые в психологических измерениях, основаны на принципе стандартного показателя.
Пример вычисления стандартного показателя.В табл. П1 приведены показатели, полученные 15 студентами на вступительных экзаменах. Не имея дополнительной информации, мы не знаем, являются ли эти показатели репрезентативными для группы всех поступавших. Однако предположим, что средний показатель на этих экзаменах был 75, а стандартное отклонение 10.
Каким же будет стандартный показатель у студента, набравшего на экзаменах 90 баллов? Насколько выше среднего лежит этот показатель, надо выразить в количестве стандартных отклонений:
Стандартный показатель для студента, с оценкой 90 равен:
В качестве второго примера возьмем учащегося с оценкой 53.
Стандартный показатель для оценки 53 равен:
В этом случае показатель учащегося лежит ниже среднего на 2,2 стандартных отклонения. Таким образом, знак стандартного показателя (+ или -) говорит о том, выше или ниже среднего находится данный показатель, а его величина показывает, насколько далеко от среднего он расположен в единицах стандартных отклонений.
Дата добавления: 2015-02-19; просмотров: 742;