Теорема Гаусса для электростатического поля в вакууме
Рисунок 1.7 - К выводу теоремы Гаусса. |
Определим поток напряженности электростатического поля зарядов q1,q2,...qn в вакууме (e=1) через произвольную замкнутую поверхность, окружающую эти заряды.
Рассмотрим сначала случай сферической поверхности радиусом R, окружающей один заряд +q, находящийся в ее центре (рис.1.7).
, где - есть интеграл по замкнутой поверхности сферы. Во всех точках сферы модуль вектора одинаков, а сам он направлен перпендикулярно поверхности. Следовательно .
Рисунок 1.8 - Пересечение силовыми линиями поверхности, охватывающей заряд. |
Полученный результат будет справедлив и для поверхности S¢ произвольной формы, так как ее пронизывает такое же количество силовых линий.
На рисунке 1.8 представлена произвольная замкнутая поверхность, охватывающая заряд q>0. Некоторые линии напряженности то выходят из поверхности, то входят в нее. Для всех линий напряженности число пересечений с поверхностью является нечетным.
Как отмечалось, линии напряженности, выходящие из объема, ограниченного замкнутой поверхностью, создают положительный поток Фе; линии же, входящие в объем, создают отрицательный поток -Фе. Потоки линий при входе и выходе компенсируются. Таким образом, при расчете суммарного потока через всю поверхность следует учитывать лишь одно (не скомпенсированное) пересечение замкнутой поверхности каждой линией напряженности.
Если заряд q не охватывается замкнутой поверхностью S, то
Рисунок 1.9 - Пересечение силовыми линиями поверхности, не охватывающей заряд. |
Рассмотрим самый общий случай поверхности произвольной формы, охватывающей n зарядов. По принципу суперпозиции электростатических полей напряженность , создаваемая зарядами q1,q2,...qn равна векторной сумме напряженностей, создаваемых каждым зарядом в отдельности: . Проекция вектора - результирующей напряженности поля на направление нормали к площадке dS равна алгебраической сумме проекций всех векторов на это направление: ,
отсюда .
Поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме зарядов, охватываемых этой поверхностью, деленной на электрическую постоянную e0. Эта формулировка представляет собой теорему Гаусса.
В общем случае электрические заряды могут быть распределены с некоторой объемной плотностью , различной в разных местах пространства. Тогда суммарный заряд объема V, охватываемого замкнутой поверхностью S равен и теорему Гаусса следует записать в виде .
Теорема Гаусса представляет значительный практический интерес: с ее помощью можно определить напряженности полей, создаваемых заряженными телами различной формы.
Дата добавления: 2015-02-13; просмотров: 2226;