Отображение p-плоскости на z- плоскость
Используя взаимосвязь между комплексными переменными и (1.24), рассмотрим отображение на z-плоскость:
- характерных точек p-плоскости;
- отрезков мнимой оси jw и всей оси jw p-плоскости;
- коридоров в левой и правой p-полуплоскостях.
1. Начало координат p-плоскости – точка с координатами (s = 0; w = 0) отображается в точку z-плоскости с координатами (x = 0; h = 0); в полярных координатах (r = 1; j = 0), (рис. 1.11, табл.1.3):
.
Рис. 1.11. Отображение точек p-плоскости на z-плоскость
2. Точка p-плоскости с координатами (s = –¥; w = 0) соответствует началу координат z-плоскости – точке с координатами (x = 0; h = 0):
.
3. Точка p-плоскости на оси частот jw с координатами (s = 0; w = p / 2T) отображается в точку z-плоскости с координатами (x = 0; h = 1); в полярных координатах (r = 1; j = p/2), (рис. 1.11, табл.1.3):
.
4. Точка p-плоскости на оси jw с координатами (s = 0;
w = –p / 2T) отображается в точку z-плоскости с координатами (x = 0; h = –1); в полярных координатах (r = 1; j = –p/2), (рис. 1.11, табл.1.3):
.
5. Две точки p-плоскости на оси jw с координатами (s = 0; w = ±p / 2T) отображаются в одну точку z-плоскости с координатами (x = –1; h = 0); в полярных координатах (r = 1; j = ±p), (рис. 1.11, табл.1.3):
.
6. Отрезок оси частот jw p-плоскости
;
на z-плоскости отображается в окружность единичного радиуса (единичную окружность):
;
; ;
радиус-вектор совершает один полный оборот против часовой стрелки, начиная с точки , т. е. угол j на z-плоскости ограничен областью главных значений.
Несложно показать, что при движении точки с начальными координатами (s = 0; w = p / T) вдоль оси jw вверх частотный интервал отображается на z-плоскости в k совпадающих единичных окружностей :
p < w ≤ (p + 2pk) Þ D = 2pk, k = 1, 2, …
Аналогично, при движении точки с начальными координатами (s = 0; w = –p / T) вдоль оси jw вниз частотный интервал также отображается на z-плоскости в k совпадающих единичных окружностей :
–(p + 2pk) < w ≤ –p Þ D = 2pk, k = 1, 2, …
Таким образом, мнимая ось jw отображается в бесчисленное множество совпадающих единичных окружностей, вследствие чего возникает неоднозначность отображения точек p-плоскости на z-плоскость.
Для их взаимно однозначного отображения ограниваются частотным диапазоном
® ,
в результате чего p-плоскость ограничивается «коридором» между двумя линиями, параллельными оси абсцисс и пересекающими ось ординат jw в точках (рис. 1.12).
Рис. 1.12. Соответствие p- и z- плоскостей
при их взаимно однозначном отображении
7. Коридор в левой p-полуплоскости
; ®
на z-плоскости отображается в круг единичного радиуса (единичный круг) (рис. 1.13, табл.1.3
;
; ® .
Рис. 1.13. Отображение «коридора» в левой p-полуплоскости на z-плоскость
8. Коридор в правой p-полуплоскости
; ®
на z-плоскости отображается в область вне единичного круга (рис. 1.14, табл.1.3):
;
; ® .
Рис. 1.14. Отображение «коридора» в правой p-полуплоскости на z-плоскость
Таблица 1.3
Дата добавления: 2015-02-10; просмотров: 2123;