Погрешности измерений. Внимание! Данные измерений, т.е

Внимание! Данные измерений, т.е. показания приборов – не округляются!

1. Любые измерения имеют погрешности. Абсолютно точных измерений не бывает! Погрешности определяют по-разному в зависимости от вида измерения.

2. Виды измерений:

· прямые – результат считывают по шкале прибора (линейки, секундомера, вольтметра, пирометра и др.);

· косвенные – результат определяется расчётом (объём параллелепипеда по длине сторон; мощность по силе тока и напряжению; скорость по пути и времени; плотность по массе и объёму и др.);

· однократные;

· многократные.

3. Виды погрешностей:

· приборные – погрешность равна цене деления прибора;

· случайные – при многократных измерениях одной и той же величины точным прибором;

· систематические – измерения неисправным прибором (секундомер спешит или отстаёт, сдвинут нуль шкалы и др.).

4. Результат измерений величины Х представляют в виде:

X = Xи ± DХ, (1)

где Xи – показания прибора (при прямых измерениях), или результат расчёта (при косвенных измерениях), или среднее значение (при многократных измерениях); DХ – абсолютная погрешность измерения.

Такая запись означает, что истинное значение измеренной величины лежит в интервале от (Xи – DХ) до (Xи + DХ).

5. Случайные погрешностиопределяют методами математической статистики, в которой предполагается, что наиболее близким к истинному значению измеряемой величины Х является среднее арифметическое áХñ от результатов измерений этой величины. Среднее арифметическое вычисляется по общим правилам – сумма всех измеренных значений делится на количество измерений:

, (2)

где N – число измерений; i – номер измерения; Хi – значение, полученное при измерении с номером i.

6. Абсолютная погрешность DХi конкретного (i-го) измерения определяется как разность между средним и конкретным значениями:

DХi = áХñ – Хi , (3)

то есть является отклонением от среднего значения. Как видно из определения, DХi может быть и положительной, и отрицательной величиной.

7. Средняя абсолютная погрешность áDХñ определяется как среднее арифметическое отклонений (3), взятых по модулю (т. е. без учёта знака!):

. (4)

При записи результата измерений áDХñ округляется до одной значащей цифры (или до двух цифр, если первая значащая цифра – единица).

8. Результат измерений со случайными погрешностями представляют в виде

X = áХñ ± áDХñ. (5)

Такая запись означает, что истинное значение измеренной величины лежит в интервале от (áХñ – áDХñ) до (áХñ + áDХñ). При записи результата измерений среднее значение áХñ округляют так, чтобы последняя значащая цифра в этом числе имела тот же разряд, что и áDХñ.

Например, при расчётах среднее значение величины Х получилось равным 2,326, а средняя абсолютная погрешность при расчётах с тремя значащими цифрами оказалась равной 0,0377. Тогда, в соответствии с правилами, результат следует записать в следующем виде:

X = 2,33 ± 0,04.

Если при том же áХñ средняя абсолютная погрешность будет меньше, например, áDХñ = 0,0148, то результат измерений нужно записать так:

X = 2,326 ± 0,015.

9. Точность измерения характеризуется относительной погрешностьюe, и выражается обычно в процентах:

. (6)

После вычисления значение e нужно обязательно округлить до одной-двух значащих цифр. Например, 1,473 % надо округлить до 1,5 %, а 3,7 % – до 4 %. Для приведённых в п. 8 примеров расчёт относительных погрешностей даёт:

. .

Полезно знать, что число, записанное с одной значащей цифрой, имеет относительную погрешность около 10 %; с двумя значащими цифрами – около 1 %; с тремя значащими цифрами – около 0,1 %.

 








Дата добавления: 2015-02-07; просмотров: 862;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.