Решение. а) Событие A – шары одинакового цвета.

а) Событие A – шары одинакового цвета.

Рассмотрим события:

A1 = бб – первый шар белый и второй шар белый.

Аналогично:

A2 = чч – первый шар черный и второй шар черный.

Событие A произойдет, если достанут 2 белых или 2 черных шара:

A = A1 + A2.

– вероятность достать второй раз белый шар не изменилась, так как шар вернули в урну. Аналогично:

По теореме сложения вероятностей для несовместных событий A1 и A2:

 

б) Событие B – шары разных цветов.

Рассмотрим события:

B1 = бч; B2 = чб.

Ясно, что B = B1 + B2;

– первый шар в урну не вернули, поэтому вероятность вычислена при условии, что первым достали белый шар.

 

в) Событие C – хотя бы один шар черный.

Противоположное событие:

– оба шара белых: .

первый шар не вернули в урну, поэтому вероятность вычислили при условии, что первым достали белый шар.

Ответ: а) ; б) ; в) .

 

2) В урне 5 белых и 10 черных шаров. Из урны последовательно достают все шары. Найти вероятность того, что:

а) третьим по порядку будет вынут черный шар;

б) из первых трех шаров хотя бы один шар будет черный.








Дата добавления: 2015-03-26; просмотров: 1461;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.