Вариационный ряд

Наблюдаемые значения случайной величины х1, х2, …, хk называются вариантами.

Частотой варианты хi называется число ni (i=1,…,k), показывающее, сколько раз эта варианта встречается в выборке.

Частостью (относительной частотой, долей) варианты хi (i=1,…,k) называется отношение ее частоты ni к объему выборки n.

Частоты и частости называютвесами.

Накопленной частотой называется количество вариант, значения которых меньше данного х:

Накопленной частостью называется отношение накопленной частоты к объему выборки:

Вариационным рядом(статистическим рядом) – называется последовательность вариант, записанных в порядке возрастания и соответствующих им весов.

Вариационный ряд может быть дискретным (выборка значений дискретной случайной величины) и непрерывным (интервальным) (выборка значений непрерывной случайной величины).

Дискретный вариационный ряд имеет вид:

Когда число вариант велико или признак является непрерывным (случайная величина может принимать любые значения в некотором интервале), составляют интервальныйвариационный ряд.

Для построения интервального вариационного ряда проводят группировкувариант – их разбивают на отдельные интервалы:

Число интервалов иногда определяют с помощью формулы Стерджеса:

Затем подсчитывается число вариант, попавших в каждый интервал – частоты ni (или частости ni/n). Если варианта находится на границе интервала, то ее присоединяют к правому интервалу.

Интервальный вариационный ряд имеет вид:

Варианты
Частоты

Эмпирической (статистической) функцией распределенияназывается функция, значение которой в точке х равно относительной частоте того, что варианта примет значение, меньшее х (накопительной частости для х):

Полигоном частотназывают ломанную, отрезки которой соединяют точки с координатами (х1; n1), (х2; n2), …, (хk; nk). Аналогично строится полигон частостей, который является статистическим аналогом многоугольника распределений.

Для непрерывного вариационного ряда полигон можно построить, если в качестве значений х1, х2, …, хk взять середины интервалов.

Интервальный вариационный ряд графически обычно изображают с помощью гистограммы.

Гистограмма– ступенчатая фигура, состоящая из прямоугольников, основаниями которых являются частичные интервалы длины h = xi+1xi, i = 0,…,k-1, а высоты равны частотам (или частостям) интервалов ni (wi).

Кумулята(кумулятивная кривая) – кривая накопленных частот (частостей). Для дискретного рядакумулята представляет ломанную, соединяющую точки или , . Для интервального рядакумулята начинается с точки, абсцисса которой равна началу первого интервала, а ордината – накопленной частоте (частости), равной нулю. Другие точки этой ломанной соответствуют концам интервалов.








Дата добавления: 2015-03-26; просмотров: 1746;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.