Лекція №30

Навчальні питання:

1. Залізовуглецеві сплави.

2. Діаграма стану залізо-вуглець.

3. Технічне залізо, сталі та чавуни.

 

Навчальне питання 1. Залізовуглецеві сплави.

Компоненти і фази в залізовуглецевих сплавах.Основни­ми компонентами залізовуглецевих сплавів е залізо і вуглець.

Залізо високої чистоти — це метал білого кольору з доб­ре виявленими феромагнітними властивостями. Міцність заліза σв — 200 ÷250 Мн/мг (20—25 кГ/мм2), твердість НВ 60—80, відносне здовження δ = 40 ÷50%.

При нормальній температурі залізо має о.ц.к.решітку. Ця модифікація заліза називається α-залізом (Feα). При темпе­ратурі 768°С (рис. 10) α-залізо втрачає магнітні властивості. Це не пов’язано з перебудовою атомів у кристалічній ре­шітці, тобто решітка о. ц. к. при цьому зберігається. Щоб відрізнити магнітне α-залізо, немагнітне іноді називають β-залізом (Feβ). При температурі 911º С α (β)-залізо перетворюється на γ-залі­зо (Feγ) з г. ц. к. решіткою. Вище 1392°С г. ц. к. решітка знову перетво­рюється на о. ц. к. Цю модифікацію, на відміну від низькотемпературної о. ц. к. решітки, називають δ-залізом (Feδ). При температурі 1539° С залізо пла­виться.

Критичні точки (температури), які відповідають певним перетворенням у залізі, мають спеціальні позначення.

Так, температуру магнітного перетво­рення Feα↔Feβ позначають А2, темпера­туру перетворення Feβ↔ Feγ—А3 а тем­пературу перетворення Feγ↔Feδ—А4.

Крім того, коли йдеться про перетво­рення при нагріванні, то до позначення критичної точки додають індекс сАс2, Ас3, Ас4, а при перетвореннях, що відбуваються при охолодженні, — індекс r (Ar2, Ar3, Ar4)1. Добавляння до заліза інших компонентів зміщує положення критичних точок.

Вуглець — це неметалевий елемент з температурою плав­лення 3500° С. Із залізом він утворює тверді розчини або хімічні сполуки, а в певних умовах може виділятись у вигляді графіту.

Гранична розчинність вуглецю в α-залізі при нормальній тем­пературі не перевищує 0,006%. Такий розчин є практично чистим, залізом. Називають його феритом (Ф). Міцність фериту σв >= 250÷300 Мн/м2 (25—30 кГ/мм2), твердість НВ 90—100 і відносне здовження δ = 30÷40%.

Твердий розчин вуглецю в γ-залізі називається а уст гні­том (А). Розчинність вуглецю в аустеніті з підвищенням темпе­ратури збільшується від 0,8 (727° С) до 2,14% (1147° С). Аустеніт немагнітний і має підвищену порівняно з феритом пластичність.

Залізо з вуглецем утворює кілька хімічних сполук. З них практичне значення має карбід Fe3С, який містить 6,67% С, Цей карбід називають цементитом (Ц). Цементит досить твердий (НВ > 800), проте крихкий, температура плавлення його близько 1600° С.

Отже, фазами в залізовуглецевих сплавах можуть бути ферит, аустеніт, цементит і графіт.

 

Навчальне питання 2. Діаграма стану залізо-вуглець.

Діаграму стану залізовуглецевих сплавів (спрощену) будують у межах концентрації вуглецю від 0 до 6,67%, тобто до утворення першої хімічної сполуки — карбіду заліза Fе3С (рис. 11). Тому компонентами залізовуглецевих сплавів можна вважати залізо (ферит) і цементит, а діаграму стану цих спла­вів називати діаграмою залізо — цементит (Ре — Ре3С).

 
 

Сплави заліза із вмістом вуглецю до 4,3% починають затвердівати на відрізку АС лінії ліквідує, виділяючи кристали твер­дого розчину — аустеніту, а з вмістом вуглецю, більшим за 4,3%,— на відрізку СD лінії ліквідує, виділяючи кристали цемен­титу. Остаточно сплави затвердівають на лінії солідус AECF.

Відразу ж після твердіння сплавй, розташовані ліворуч від точки Е (2,14% С), є однорідними і складаються із зерен аусте­ніту, а ті, що містяться праворуч від точки Е, становлять меха­нічну суміш із зерен аустеніту і цементиту. При цьому в сплаві 4,3% вуглецю (точка С) утворюється однорідна евтектична суміш, яку називають ледебуритом (Л).

Отже, точка Е поділяє діаграму стану залізовуглецевих спла­вів на дві частини. Сплави ліворуч від цієї точки затвердівають відповідно до лінії АЕ і після твердіння мають однорідну струк­туру, що складається з зерен аустеніту. Ці сплави називають сталями. Внаслідок однорідності сталі мають високу пластич­ність, яка дає змогу обробляти їх тиском (куванням, прока­туванням).

У сплавах, розташованих на діаграмі праворуч від точки Е, кристалізація закінчується при сталій температурі 1147°С (лінія ЕСF) з утворенням евтектики — ледебуриту. Ці сплави нази­вають чавунами. Наявність крихкої і легкоплавкої евтектики перешкоджає обробці чавунів тиском, проте поліпшує їх ливарні властивості.

Остаточна структура сталей і чавунів, яка спостерігається при нормальній температурі, зумовлюється перетвореннями в твердому стані, які відбуваються при температурах, що відпо­відають лініям GS, SE і SPK. діаграми стану залізо — вуглець.

Структура сталей. Починати розгляд перетворень у сталях у твердому стані зручніше із сталі, яка зазнає одного перетво­рення в точці 5 при температурі 727° С. При охолодженні до точки 5 ця сталь складається з зерен аустеніту. У точці S від­бувається поліморфне перетворення Реγ ↔ Реα. Оскільки роз­чинність вуглецю в α-залізі дуже обмежена, то при перетворенні він виділяється в зв’язаному стані — у вигляді цементиту. В результаті у сталі замість аустеніту утворюється дрібнодис­персна ферито-цементитна суміш пластинчастої будови (рис. 12, б), яку називають перлітом (П). При дальшому охолодженні до кімнатної температури структура перліту не змінюється. На відміну від евтектики, утворюваної при твердінні рідини, суміш, що утворюється при розпаданні твердого розчину, називають евтектоїдом. Евтектоїд у залізовуглецевих сплавах утворюється при сталій температурі 727° С (Ar1) незалежно від вагових спів­відношень компонентів. Тому лінію РSК називають лінією евтектоїдного перетворення, сталь із структурою евтектоїда (перлі­ту) — евтектоїдною, або перлітною, а точку S — евтектоїдною точкою. Відповідно до цього сталі, що містяться ліворуч від точ­ки S, називають доевтектоїдними, а праворуч — заевтектоїдними.

У доевтектоїдних сталях при температурах, що відповідають лінії GS (геометричному місцю точок Ar3), починається процес перекристалізації і утво­рення фериту. Тому при дальшому охолодженні концентрація вуглецю в аустеніті, що залишився, підвищується і в точці Ar1 (лінія РSК) досягає евтектоїдної, тобто 0,8%. У цих умовах аустеніт роз­падається з утворенням перліту. Ферит при цьому не зазнає перетворень (рис. 12, а). Очевидно, що з підвищенням вмісту вуглецю кількість перліту в доевтектоїдних сталях буде збільшуватись, а фериту — зменшуватись. При вмісті 0,8%С структура сталі складатиметься з одного перліту.

Перетворення аустеніту у заевтектоїдних сталях починається на лінії SE граничної розчинності вуглецю (місце критичних точок Аст) При цій температурі з аустеніту починає виділятися надлишковий вуглець у вигляді збагаченої ним фази — цемен­титу. При дальшому охолодженні кількість цементиту, що виді­лився, збільшується, тому концентрація вуглецю в аустеніті зменшується і в точці Ar1(лінія PSK) досягає евтектоїдної. Залишок аустеніту перетворюється при цій температурі в перліт.

Отже, структура повільно охолоджених заевтектоїдних ста­лей складається також з двох структурних складових (рис. 12, в)—цементиту у вигляді світлої сітки і перліту. З підви­щенням вмісту вуглецю кількість цементиту (товщина сітки) в заевтектоїдних сталях збільшується.

Структура чавунів. Кристалізація чавунів закінчується при температурі 1147°С утворенням евтектики. Тому лінію ECF називають лінією евтектичного перетворення.

Структура чавуну з 4,3% вуглецю відразу ж після затвердівання (точка С) складається з однорідної аустеніто-цементитної евтектичної суміші — ледебуриту. При дальшому охолоджен­ні з аустеніту (як і в заевтектоїдній сталі) виділяється цементит. У зв’язку з цим аустеніт збіднюється на вуглець і, досягнувши при температурі 727° С евтектоїдної концентрації, розпадається з утворенням перліту. Тому структура ледебуриту при нормаль­ній температурі складається з перліту і цементиту (рис. 13,6). Чавун з такою структурою називають евтектичним, а точку Севтектичною точкою. Відповідно до цього чавуни, що містяться на діаграмі ліворуч від точки С, називають доевтектичними, а праворуч — заевтектичними.

Доевтектичні чавуни починають затвердівати на лінії АС з випадання кристалів аустеніту. Тому в міру зниження темпе­ратури рідка частина сплаву збагачується вуглецем і при 1147° С, досягнувши евтектичної концентрації, тобто 4,3%, за- твердівае з утворенням евтектики (ледебуриту). При дальшому охолодженні первинний аустеніт і аустеніт ледебуриту при тем­пературі 727° С перетво­рюються на перліт. Тому структура доевтектичних чавунів при нормальній температурі складається з перліту і ледебуриту (рис. 13, а). Заевтектичні чавуни починають затвердівати з виділення кристалів цементиту, який при охолодженні не зазнає ніяких перетворень. Тому після твердіння структура цих чавунів складається з кри­сталів цементиту і ледебуриту (рис. 13, в).

У розглянутих чавунах весь вуглець перебуває в зв’язаному стані у вигляді карбіду заліза Fе3С. Такі чавуни на зламі мають білий відтінок, тому їх називають білими. У зв’язку з високою твердістю, зумовленою наявністю великої кількості цементиту, білі чавуни важко обробляти різанням, тому в практиці їх за­стосування обмежене.

У деяких умовах, що визначаються швидкістю охолодження, хімічним складом або термічною обробкою, карбід заліза в чавуні може розпадатися з утворенням графіту. Чавуни, в яких частина вуглецю перебуває у вільному стані у вигляді графіту, мають на зламі сірий відтінок, тому їх називають сірими. Струк­туру сірих чавунів діаграма стану залізо — вуглець не відбиває.

 








Дата добавления: 2015-03-14; просмотров: 800;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.