Упражнения. 1. Установить, какие из следующих предложений являются, а ка­кие не являются высказываниями:

1. Установить, какие из следующих предложений являются, а ка­кие не являются высказываниями:

1). Всякая общественно-экономическая формация имеет своей основой способ производства материальных благ. 2). Был ли Наполеон французским императором? 3). Наполеон никогда не был французским императором. 4). Водители, не нарушайте правила дорожного движения! 5). Цена товара X меньше его стоимости.

2. Установить вид высказываний по характеру предиката:

1). Все кошки - млекопитающие.

2). Некоторые множества бесконечны.

3). Спрос рождает предложение.

4). Верста больше километра.

5). Сравнение - это мысленная операция.

6). Каждый человек моложе своих родителей.

7). Этот человек не имеет чувства юмора.

8) Солнце - звезда.

9). Атлантида не существует.

10). Существует любовь.

11). Минск древнее Могилева.

12). Иван уважает Алексея.

 

3. Установить количество и качество следующих высказываний:

1). Наукообразное преподнесение лжи гипнотически действует на доверчивого человека.

2). В любой библиотеке есть книги, к которым обращаются очень редко.

3). Многие выдающиеся математики не приняли неевклидовой геометрии.

 

4. Привести следующие высказывания к одной из четырех форм
и выразить в символическом виде:

1). Некоторые проблемы человеческой истории до сих пор не решены.

2). Каждый кулик свое болото хвалит.

3). Ни один ученый не мыслит формулами (А. Эйнштейн).

5. Установить распределенность терминов в следующих выска­зываниях:

1). В первобытном обществе не существовало никакой власти, которая была бы обособлена от общества и как бы стояла над ним.

2). Должностные лица наделены особыми полномочиями совер­шать от имени государства те или иные властные действия.

3). Никакая поддержка террористических банд не может быть оправдана.

4). Некоторая часть преобразующей деятельности человека нега­тивно изменяет условия развития естественных систем.

5). 70 % всего мирового грузооборота перевозится морским пу­тем.

6). Только талантливый оратор не говорит заученными фразами.

7). Ни один человек не должен страдать за правду.

8). Ни один человек не живет два века.

9). Незаконная сделка является недействительной.

10). Юность планеты хочет видеть мир свободным от насилия и войн.

11). Маршал Жуков - выдающийся полководец второй мировой войны.

12). Деньги есть условный эквивалент товара.

6. Образовать высказывания всех форм (А, Е, J, О) из следующих пар:

1). Русский князь (S); сторонник централизованной власти (Р).

2). Моральная норма (S); правовая норма (Р).

3). Русский феодал (S); сторонник преобразований Петра I (P). 4). Иван (S); брат Марьи (Р).

7. Выяснить, в значении каких логических союзов употребляют­ся грамматические союзы в следующих предложениях. Записать в символической форме.

1). Хоть редко, да метко.

2). «Почтенный старец этот постоянно был сердит или выпивши, или выпивши и сердит вместе» (А.И. Герцен).

3). «Храбрец или сидит в седле, или тихо спит в сырой земле» (Р. Гамзатов).

4). Движение яхты было возможно лишь тогда, когда дул ветер.

5). «Стоило отцу заикнуться о плате, как капитан с яростью при­нимался сопеть» (Р. Стивенсон).

6). Атеросклероз чаще всего поражает жителей больших городов и людей умственного труда.

8. Записать следующие сложные высказывания в символической форме:

1). Фемистокл знал каждого жителя Афин в лицо и по имени.

2). Каждый из нас знает книгу или хотя бы имя Альфреда Брема.

3). Неверно, что он готовился к уроку и решит эту задачу. - 4). Неверно, что он готовился к уроку, однако он решит эту задачу.

5). Неверно, что ветер дует, если и только если нет дождя.

6). Тело сохраняет состояние покоя или равномерного прямоли­нейного движения, если только оно не вынуждено изменить это со­стояние под влиянием действующих сил.

9. Дано истинное высказывание Р. Можно ли установить логиче­ское значение Q в высказывании (Q v Р) -> Р?

10. Пользуясь значениями логических союзов, решить следую­щую задачу.

В деле об убийствах имеются двое подозреваемых - Петр и Павел. Допросили четырех свидетелей, которые последовательно дали такие показания: «Петр не виноват», «Павел не виноват», «Из двух первых показаний по меньшей мере одно истинно», «Показания третьего ложны». Четвертый свидетель оказался прав. Кто преступник?

 

11. Построить таблицу истинности высказывания (Р ↔ Q) → Q .

12. Проверить, являются ли следующие высказывания истинными:

1). ((A → B)v C) ↔ ((Ā Ù В) → С).

2). (А v В) → (А ↔ С) Ù С.

3). (А Ù В) → (В v С) Ù (А ↔ С).

4). ((А → С) v В) Ù А) → (А Ù В).

13. Перевести на язык логики высказываний следующие выра­жения:

1). «Он молчит, а Варенька поет ему «Виют витры» или глядит на него задумчиво своими темными глазами, или вдруг зальется: «Ха-ха-ха!»» (А.П. Чехов).

2). «Если кто из товарищей опаздывал на молебен, или до него доходили слухи о какой-либо проказе гимназистов, или видели классную даму поздно вечером с офицером, то он очень волновался и все говорил, как бы чего не вышло» (А.П. Чехов).

3). «Если я долго не приезжал в город, то, значит, я был болен или что-нибудь случилось со мной, и они оба сильно беспокоились» (А.П. Чехов).

14. Построить таблицы истинности для следующих логических форм:

1). ((не-В→ A)vB) ↔A.

2). ((A vB)vC) → (B→ С). .

3). C→ ((BvD) Ùне-C).

15. Являются ли равнозначными следующие высказывания (по­парно):

1). Иван и Марья друг друга не любят; неверно, что Иван любит Марью, а Марья любит Ивана.

2). Каждый студент нашего курса способен или трудолюбив; не­верно, что каждый студент нашего курса не способен и не трудолю­бив.

3). Число четное тогда и только тогда, когда оно делится на 2; ес­ли число четное, то оно делится на 2, а если число нечетное, то оно не делится на 2.

4. ЗАКОНЫ ЛОГИКИ

Законы формальной логики связаны с истинностью (правильно­стью) мышления. В них выражается определенность, последова­тельность, непротиворечивость и обоснованность мыслительного процесса. Законы логики являются принципами правильного рассу­ждения в ходе доказательства истинности или опровержения лож­ности высказываний.

Специфика законов логики в том, что в качестве значений пере­менных, входящих в структуру логических форм, выступают от­дельные высказывания как целостные образования. Какие бы вы­сказывания ни подставлялись вместо переменных в логический за­кон, результат будет одним и тем же: полученное сложное высказы­вание будет истинным.

Наиболее простыми законами логики высказываний являются за­коны с одной переменной - закон исключенного третьего, закон не­противоречия, закон тождества, законы удаления и введения двой­ного отрицания.

Закон исключенного третьего- это форма AvA. Если в эту форму вместо А подставить какое-либо высказывание, то в результате всегда получается сложное истинное высказывание. Данный закон гласит: из двух противоречащих высказываний одно истинно, одно ложно, а третьего не дано. Он действителен только для контрадик­торных (противоречивых) высказываний (А - О, Е - J, О - A, J - Е), которые не могут быть вместе ложными. Сфера применимости этого закона может быть представлена следующими вариантами-схемами:

1. Это S есть Р. - Это S не есть Р.

2. Все S есть Р. - Некоторые S не есть Р.

3. Ни одно S не есть Р. - Некоторые S есть Р.

Законом непротиворечияназывается форма (А л А). Она тоже порождает только истинные сложные высказывания Данный закон гласит: два противоположных высказывания не могут быть истин­ными в одно и то же время и в одном и том же отношении. Следова­тельно, одно из них или даже оба могут быть ложными.

Варианты схемы применения данного закона:

1. А - Е. Все S есть Р. - Ни одно S не есть Р (ложно одно изних, или ложны оба высказывания).

2. А - О. Все S есть Р. - Некоторые S не есть Р (ложно одно из

них).

3. Е - J. Ни одно S не есть Р. - Некоторые S есть Р (ложно одно

из них).

4. Это S есть Р. - Это S не есть Р (ложно одно из них).

Согласно закону тождества(А ↔ А), всякое высказывание яв­ляется необходимым и достаточным условием своей собственной истинности. Отсюда вытекает, что в процессе рассуждения всякое высказывание должно быть согласовано с самим собой. Рассогласо­ванность в смыслах используемых высказываний чревата серьезны­ми ошибками. Самые серьезные из них называются подменой поня­тия и подменой тезиса.

Известно, что если отрицать дважды некоторое высказывание, то в результате получается, что утверждается это высказывание без всякого отрицания. Так, говоря: «Неверно, что Иванов не виноват», мы тем самым утверждаем: «Иванов виноват». Отсюда ясна спра­ведливость закона удаления двойного отрицания.

Столь же приемлемо и обратное положение - А → А, называе­мое законом введения двойного отрицания.

Рассмотренные законы с одной переменной легко устанавлива­ются табличным способом (см. табл. 4.1).

Таблица 4.1

 

А Av Ā (А Ù А) А↔А Ā →А А→ Ā
И И И И И И
л И И И И И

Более сложную структуру имеют законы с более чем одной пе­ременной.

Законы исключенного третьего, непротиворечия и тождества бы­ли открыты еще Аристотелем.

Закон достаточного основаниябыл сформулирован Лейбницем уже в XVIII в. Он гласит: всякая мысль должна быть достаточно обоснованной. Смысл этого закона выходит за пределы языка логи­ки высказываний и не может быть представлен в логической форме. Данный закон работает в системе доказательств, опровержения и требует аргументации. Достаточным основанием любого высказы­вания является другое высказывание, ранее признанное истинным из которого с необходимостью вытекает истинность данного выска­зывания. Любое положение может быть признано истинным только после того, как его истинность будет доказана, и не должно прини­маться на веру.

Закон достаточного основания гласит: всякая истинная (доказан­ная) мысль имеет достаточное основание. Выражается он так: «А есть потому, что есть В».








Дата добавления: 2015-03-11; просмотров: 1900;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.012 сек.