Дифференциальные уравнения второго порядка. Линейные однородные уравнения второго порядка с постоянными коэффициентами

 

Линейные однородные уравнения второго порядка с постоянными коэффициентами

Общий вид такого уравнения:

где p и q -действительные числа. Корни его характеристического уравнения могут быть:

1) действительными и различными:

2) действительными и равными:

3) комплексными:

Им соответствуют следующие общие решения уравнения:

1) ;

2) ;

3) .

 

Пример 3.

Найти частное решение линейного однородного уравнения второго порядка с постоянными коэффициентами, удовлетворяющее начальным условиям:

 

Решение:

а) Характеристическое уравнение имеет два различных вещественных корня , поэтому общее решение этого дифференциального уравнения записывается в виде , где произвольные постоянные.

Отсюда

Основываясь на начальных условиях, получаем

Решая систему уравнений получаем =1; =0.

Частное решение данного уравнения, удовлетворяющего заданным начальным условиям, приобретает вид

б) Характеристическое уравнение имеет два равных корня поэтому общее решение соответствующего дифференциального уравнения будет иметь вид Дифференцируя, получим .

Учитывая начальные условия, получаем систему для определения Откуда , поэтому частное решение имеет вид:

в) Характеристическое уравнение не имеет действительных корней. Его корни:

Поэтому общее решение данного уравнения имеет вид:

Дифференцируя, получим:

Подставляя в выражения для начальные условия, получим систему уравнений:

решая которую, найдем .

Тогда частное решение данного уравнения будет иметь вид:

 

Линейные неоднородные уравнения второго порядка с постоянными коэффициентами

Общий вид такого уравнения: (*)

В правой части: многочлен степени .

Общее решение уравнения (*)может быть представлено в виде

где - общее решение соответствующего линейного однородного уравнения,

- какое- либо частное решение неоднородного уравнения (*).

Для отыскания пользуются следующим правилом:

1) если число не является корнем характеристического уравнения, то где - многочлен степени с неопределенными коэффициентами;

2) если число совпадает с одним из корней характеристического уравнения, то

;

3) если число совпадает с обоими корнями характеристического уравнения , то

.

 

Пример 4

Найти общее решение линейного неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами:

 

Решение:

Будем искать общее решение в виде

Y – общее решение уравнения характеристическое уравнение которого а его корни и решение Y имеет вид:

Частное решение будем искать в виде

или

Подставим и в исходное уравнение, получим:

или

Составим систему для нахождения А и В.

Тогда частное решение имеет вид: .

Общее решение данного уравнения будет:

.

 

 

Варианты индивидуальных заданий








Дата добавления: 2014-12-08; просмотров: 1166;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.011 сек.