Интегрирование рациональных дробей. Методика интегрирования правильных дробей основана на представлении знаменателя в виде произведения линейных выражений (возможно в целых положительных

 

Методика интегрирования правильных дробей основана на представлении знаменателя в виде произведения линейных выражений (возможно в целых положительных степенях) и квадратичных сомножителей с отрицательными дискриминантами (возможно в целых степенях). Известен алгебраический результат, что такое представление всегда возможно.

.

Вообще говоря, получение такого представления для многочленов высоких степеней является сложной задачей. Мы в дальнейшем будем считать, что знаменатель уже представлен в таком виде. Известен алгебраический результат, что любая правильная дробь может быть представлена в виде суммы простейших дробей, интегралы от которых легко находятся. При этом каждому линейному сомножителю вида в знаменателе соответствует группа простейших дробей вида:

.

В частности при имеем только одно слагаемое: .

Каждому квадратичному сомножителю соответствует группа дробей вида:

,

а при - одно слагаемое .

Рассмотрим примеры разложения правильной дроби на простейшие:

Пример 20 .

Пример 21 .

Пример 22

.

Пример 23 .

Пример 24 .

Теоретически гарантируется, что все выписанные разложения справедливы. Остается научиться находить постоянные А, В, С … . Предположим, что указанные константы найдены. Тогда интегрирование правильной дроби сведется к нахождению интегралов вида:

I , III ,

II , , IV .

Интегралы I и II видов табличные, интегралы III вида рассмотрены в предыдущей теме, интегралы IV вида вычисляются по той же схеме, что и III вида, но в отличие от них после выделения полного квадрата возникают интегралы вида:

,

которые находятся по рекуррентной формуле:

.

Перейдем к рассмотрению конкретных примеров вычисления интегралов от правильных рациональных дробей. Сначала рассмотрим наиболее простой случай, когда знаменатель содержит только некратные линейные множители.

Пример 25 .

Решение.

.

После приведения к общему знаменателю получим следующее тождество для числителей:

.

Этим тождеством мы и воспользуемся для нахождения коэффициентов А, В и С.

Если в данном тождестве в качестве взять конкретное значение, то получим линейное уравнение относительно А, В и С. Таких уравнений нам нужно три. Полученную систему можно решить, например, методом Гаусса. Однако можно гораздо легче найти коэффициенты, если в качестве брать не произвольные числа, а корни линейных сомножителей в знаменателе. При этом в правой части тождества будет присутствовать только один из неизвестных коэффициентов.

В результате получим:

.

Если знаменатель содержит квадратичные сомножители, то всегда нужно проверять, не будет ли D неотрицательным. Если да, то лучше разбить его на линейные сомножители.

Пример 26 .

Решение.

.

Завершите самостоятельно вычисление данного интеграла.

Перейдем к рассмотрению чуть более сложного случая, когда знаменатель содержит только линейные сомножители, причем некоторые из них кратные.

Пример 27 .

Решение.

.

Положив последовательно и , легко найдем два неизвестных коэффициента:

Остальные два найдем, приравняв коэффициенты при одинаковых степенях левой и правой частей тождества:

Тогда

.

Рассмотрим теперь случай, когда знаменатель содержит некратные квадратичные сомножители с отрицательным дискриминантом.

Пример 28 .

Решение.

.

.

Положим :

 

Остальные неизвестные найдем, приравнивая коэффициенты при одинаковых степенях:

Тогда

 

Вопросы для самопроверки

 

1. Что называется первообразной?

2. Сформулируйте основные свойства неопределенного интеграла.

3. В чем заключается метод замены переменной?

4. Какие функции целесообразно интегрировать по частям? Почему?

5. Как разложить рациональную дробь на простейшие?

 

 








Дата добавления: 2014-12-08; просмотров: 986;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.02 сек.