Интегрирование по частям. Формула интегрирования получается почленным интегрированием формулы производной произведения.

 

Формула интегрирования получается почленным интегрированием формулы производной произведения.

.

Смысл формулы заключается в том, что производная перебрасывается с одного множителя не другой и интеграл при этом может оказаться проще, чем исходный.

Можно выделить по крайней мере два класса интегралов, для которых применима формула интегрирования по частям.

I.

где - многочлен степени . В качестве нужно взять , а = - другой сомножитель.

При этом формулу приходится применить столько раз, какова степень многочлена.

 

II. .

В этом случае, наоборот, следует положить = .

Рассмотрим применение указанной схемы.

Пример 13.

.

Это интеграл первого типа, поэтому:

= =

= =

Пример 14. .

Решение.

Это интеграл второго типа, поэтому имеем:

.

Заметим, что при использовании формулы интегрирования по частям приходится восстанавливать функцию по ее дифференциалу . Поэтому в качестве этого сомножителя нужно брать легко интегрируемую функцию.

Формула интегрирования по частям может хорошо сработать и в других случаях.

Пример 15 .

.

Получили уравнение относительного исходного интеграла I. Вынося I за скобку, получим

,

откуда

.

 








Дата добавления: 2014-12-08; просмотров: 836;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.