Решение. Канонические уравнения прямой, проходящей через данную точку, имеют вид .
Канонические уравнения прямой, проходящей через данную точку, имеют вид .
Подставим в эти уравнения координаты точки . Получим:
Условие перпендикулярности прямой и плоскости имеет вид .
Так как прямая перпендикулярна плоскости , то в качестве направляющего вектора прямой можно взять нормальный вектор плоскости , т.е. в формуле (3.13) отношение можно принять равным единице. Следовательно, уравнение прямой примет вид: .
13) Найти координаты точки пересечения прямой : и плоскости : .
Дата добавления: 2014-12-07; просмотров: 759;