Площадь криволинейной трапеции численно равна определенному интегралу
.
У любого определенного интеграла (который существует) есть очень хороший геометрический смысл. На уроке Определенный интеграл. Примеры решений я говорил, что определенный интеграл – это число. А сейчас пришла пора констатировать еще один полезный факт. С точки зрения геометрии определенный интеграл – это ПЛОЩАДЬ.
То есть, определенному интегралу (если он существует) геометрически соответствует площадь некоторой фигуры. Например, рассмотрим определенный интеграл . Подынтегральная функция задает на плоскости некоторую кривую (её можно всегда при желании начертить), а сам определенный интеграл численно равен площади соответствующей криволинейной трапеции.
Пример 1
Вычислить площадь фигуры, ограниченной линиями , , , .
Это типовая формулировка задания. Первый и важнейший момент решения – построение чертежа. Причем, чертеж необходимо построить ПРАВИЛЬНО.
При построении чертежа я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потом – параболы, гиперболы, графики других функций. Графики функций выгоднее строить поточечно, с техникой поточечного построения можно ознакомиться в справочном материале Графики и свойства элементарных функций.
Там же можно найти очень полезный применительно к нашему уроку материал – как быстро построить параболу.
В данной задаче решение может выглядеть так.
Выполним чертеж (обратите внимание, что уравнение задает ось ):
Штриховать криволинейную трапецию я не буду, здесь очевидно, о какой площади идет речь. Решение продолжается так:
На отрезке график функции расположен над осью , поэтому:
Ответ:
У кого возникли трудности с вычислением определенного интеграла и применением формулы Ньютона-Лейбница , обратитесь к лекции Определенный интеграл. Примеры решений.
После того, как задание выполнено, всегда полезно взглянуть на чертеж и прикинуть, реальный ли получился ответ. В данном случае «на глазок» подсчитываем количество клеточек в чертеже – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получился, скажем, ответ: 20 квадратных единиц, то, очевидно, что где-то допущена ошибка – в рассматриваемую фигуру 20 клеточек явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.
Пример 2
Вычислить площадь фигуры, ограниченной линиями , , и осью
Это пример для самостоятельного решения. Полное решение и ответ в конце урока.
Что делать, если криволинейная трапеция расположена под осью ?
Пример 3
Вычислить площадь фигуры, ограниченной линиями , и координатными осями.
Решение: Выполним чертеж:
Если криволинейная трапеция полностью расположена под осью , то её площадь можно найти по формуле:
В данном случае:
Ответ:
Внимание! Не следует путать два типа задач:
1) Если Вам предложено решить просто определенный интеграл без всякого геометрического смысла, то он может быть отрицательным.
2) Если Вам предложено найти площадь фигуры с помощью определенного интеграла, то площадь всегда положительна! Именно поэтому в только что рассмотренной формуле фигурирует минус.
На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому, от простейших школьных задачек переходим к более содержательным примерам.
Пример 4
Найти площадь плоской фигуры, ограниченной линиями , .
Решение: Сначала нужно выполнить чертеж. Вообще говоря, при построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы и прямой . Это можно сделать двумя способами. Первый способ – аналитический. Решаем уравнение:
Значит, нижний предел интегрирования , верхний предел интегрирования .
Этим способом лучше, по возможности, не пользоваться.
Гораздо выгоднее и быстрее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой». Техника поточечного построения для различных графиков подробно рассмотрена в справкеГрафики и свойства элементарных функций. Тем не менее, аналитический способ нахождения пределов все-таки приходится иногда применять, если, например, график достаточно большой, или поточенное построение не выявило пределов интегрирования (они могут быть дробными или иррациональными). И такой пример, мы тоже рассмотрим.
Возвращаемся к нашей задаче: рациональнее сначала построить прямую и только потом параболу. Выполним чертеж:
Повторюсь, что при поточечном построении пределы интегрирования чаще всего выясняются «автоматом».
А теперь рабочая формула: Если на отрезке некоторая непрерывная функция больше либо равна некоторой непрерывной функции , то площадь соответствующей фигуры можно найти по формуле:
Здесь уже не надо думать, где расположена фигура – над осью или под осью, и, грубо говоря, важно, какой график ВЫШЕ(относительно другого графика), а какой – НИЖЕ.
В рассматриваемом примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из необходимо вычесть
Завершение решения может выглядеть так:
Искомая фигура ограничена параболой сверху и прямой снизу.
На отрезке , по соответствующей формуле:
Ответ:
На самом деле школьная формула для площади криволинейной трапеции в нижней полуплоскости (см. простенький пример №3) – частный случай формулы . Поскольку ось задается уравнением , а график функции расположен ниже оси , то
А сейчас пара примеров для самостоятельного решения
Пример 5
Найти площадь фигуры, ограниченной линиями , .
Пример 6
Найти площадь фигуры, ограниченной линиями , .
В ходе решения задач на вычисление площади с помощью определенного интеграла иногда случается забавный казус. Чертеж выполнен правильно, расчеты – правильно, но по невнимательности… найдена площадь не той фигуры, именно так несколько раз лажался ваш покорный слуга. Вот реальный случай из жизни:
Пример 7
Вычислить площадь фигуры, ограниченной линиями , , , .
Сначала выполним чертеж:
Фигура, площадь которой нам нужно найти, заштрихована синим цветом(внимательно смотрите на условие – чем ограничена фигура!). Но на практике по невнимательности нередко возникает, что нужно найти площадь фигуры, которая заштрихована зеленым цветом!
Этот пример еще и полезен тем, что в нём площадь фигуры считается с помощью двух определенных интегралов. Действительно:
1) На отрезке над осью расположен график прямой ;
2) На отрезке над осью расположен график гиперболы .
Совершенно очевидно, что площади можно (и нужно) приплюсовать, поэтому:
Ответ:
Пример 8
Вычислить площадь фигуры, ограниченной линиями ,
Представим уравнения в «школьном» виде , и выполним поточечный чертеж:
Из чертежа видно, что верхний предел у нас «хороший»: .
Но чему равен нижний предел?! Понятно, что это не целое число, но какое? Может быть ? Но где гарантия, что чертеж выполнен с идеальной точностью, вполне может оказаться что . Или корень. А если мы вообще неправильно построили график?
В таких случаях приходиться тратить дополнительное время и уточнять пределы интегрирования аналитически.
Найдем точки пересечения прямой и параболы .
Для этого решаем уравнение:
,
. Следовательно, .
Дальнейшее решение тривиально, главное, не запутаться в подстановках и знаках, вычисления здесь не самые простые.
На отрезке , по соответствующей формуле:
Ответ:
Ну, и в заключение урока, рассмотрим два задания сложнее.
Пример 9
Вычислить площадь фигуры, ограниченной линиями , ,
Решение: Изобразим данную фигуру на чертеже.
Для поточечного построения чертежа необходимо знать внешний вид синусоиды (и вообще полезно знать графики всех элементарных функций), а также некоторые значения синуса, их можно найти в тригонометрической таблице. В ряде случаев (как в этом) допускается построение схематического чертежа, на котором принципиально правильно должны быть отображены графики и пределы интегрирования.
С пределами интегрирования здесь проблем нет, они следуют прямо из условия: – «икс» изменяется от нуля до «пи». Оформляем дальнейшее решение:
На отрезке график функции расположен над осью , поэтому:
(1) Как интегрируются синусы и косинусы в нечетных степенях можно посмотреть на урокеИнтегралы от тригонометрических функций. Это типовой прием, отщипываем один синус.
(2) Используем основное тригонометрическое тождество в виде
(3) Проведем замену переменной , тогда:
Новые переделы интегрирования:
У кого совсем плохи дела с заменами, прошу пройти на урок Метод замены в неопределенном интеграле. Кому не очень понятен алгоритм замены в определенном интеграле, посетите страницу Определенный интеграл. Примеры решений.
(4) Здесь мы использовали свойство определенного интеграла , расположив пределы интегрирования в «привычном» порядке
Ответ:
Пример 10
Вычислить площадь фигуры, ограниченной линиями , ,
Это пример для самостоятельного решения. Полное решение и ответ на нижнем этаже.
Вот, пожалуй, и все основные принципиальные приёмы нахождения площадей с помощью определенного интеграла. Помимо рассмотренных методов интегрирования, иногда приходится применять формулу интегрирования по частям в определенном интеграле, что не представляет собой особых трудностей. Рассмотрим интересный пример с арккотангенсом:
Пример 11
Вычислить площадь фигуры, ограниченной линиями , и координатными осями.
Полного решения не будет, надо же вас немного помучить. А правильный ответ скажу: .
Решения и ответы:
Пример 2: Решение:
Выполним чертеж:
На отрезке график функции расположен над осью , поэтому:
Ответ:
Примечание: В задачах на нахождение площадей преподаватели часто требуют записывать ответ не только точно, но и, в том числе, приближенно.
Пример 5: Решение:
Выполним чертеж:
На отрезке , по соответствующей формуле:
Ответ:
Пример 6: Решение: Выполним чертеж.
На отрезке , по соответствующей формуле:
Ответ:
Пример 10: Решение: Изобразим данную фигуру на чертеже:
На отрезке график функции расположен над осью , поэтому:
Ответ:
Примечание: обратите внимание, как берется интеграл от тангенса в кубе, здесь использовано следствие основного тригонометрического тождества .
Далее в интегралах использован метод подведения функций под знак дифференциала (можно было использовать замену в определенном интеграле, но решение получилось бы длиннее).
Дата добавления: 2014-11-29; просмотров: 5008;