Ход решения. 1. Плоскость π4 будет перпендикулярна к плоскости α, если она перпендикулярна к горизонтали этой плоскости

1. Плоскость π4 будет перпендикулярна к плоскости α, если она перпендикулярна к горизонтали этой плоскости. При этом ось х14 перпендикулярна к горизонтальной проекции h1 горизонтали h плоскости α. Дополнительной ортогональной проекцией плоскости α на плоскость π4 является прямая B4C4D4 (рис.52 ).

 

Рис. 52 Рис.53

2. Из точки А4 опускаем перпендикуляр А4 K4 на прямую B4C4D4. Длина отрезка А4K4 равна расстоянию от точки А до плоскости α(ΔBCD) (рис.53 ).

Построим проекции отрезка АК. Горизонтальная проекция А1К1 параллельна оси х14, так как отрезок АК параллелен плоскости π4, и перпендикулярна к горизонтальной проекции h1горизонтали h плоскости α. Фронтальную проекцию К2 точки К строим по двум ее проекциям К1 и K4.

 

На основании решения рассмотренной задачи можно определить расстояние между параллельными прямой и плоскостью, между двумя параллельными плоскостями.

 

 

Библиографический список

1. Гордон В.О., Семенцов-Огиевский М.А. Курс начертательной геометрии. – М.: Наука, 2000 – 272с.

2. Крылов Н.Н. Начертательная геометрия. – М.: Высшая школа, 2007 – 224с.

3. Локтев О.В. Краткий курс начертательной геометрии. – М.: Высшая школа, 2001 – 130с.

4. Фролов С.А. Начертательная геометрия. М.: Машиностроение, 1983 – 240с.








Дата добавления: 2014-12-05; просмотров: 990;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.