Виды математических моделей

 

В зависимости от того, какими средствами, при каких условиях и по отношению к каким объектам познания реализуется способность моде­лей отображать действительность, возникает их большое разнообразие, а вместе с ним — классификации. Путем обобщения существующих клас­сификаций выделим базовые модели по применяемому математическому аппарату, на основе которых получают раз­витие специальные модели (рисунок 8.1).

 

Рисунок 8.1 - Формальная классификация моделей

 

Математические модели отображают изучаемые объекты (процессы, системы) в виде явных функциональных соотношений: алгебраических равенств и неравенств, интегральных и дифферен­циальных, конечно-разностных и других математических выражений (закон распределения случайной величины, регрессионные модели и т.д.), а также отношений математической логики.

В зависимости от двух фундаментальных признаков построения математической модели — вида описания причинно-следственных связей и изменений их во вре­мени — различают детерминистические и стохастические, статические и динамические модели (рисунок 8.2).

Цель схемы, представленной на рисунке, — отобразить следующие особенности:

1) математические модели могут быть и детерминистическими, и стохастическими;

2) детерминистические и стохастические модели могут быть и статическими, и динамическими.

Математическая модель называется детерминистической (детерминированной), если все ее параметры и переменные являются однозначно определяемыми ве­личинами, а также выполняется условие полной определенности ин формации. В противном случае, в условиях неопределенности инфор­мации, когда параметры и переменные модели — случайные величи­ны, модель называется стохастической (вероятностной).

 

 

Рисунок 8.2 – Классы математических моделей

 

Модель называется динами­ческой, если как минимум одна переменная изменяется по периодам времени, и статической, если принимается гипотеза, что переменные не изменяются по периодам времени.

В простейшем случае балансовые модели выступают в виде уравнения баланса, где в левой части располагается сумма каких-либо поступлений, а в правой - расходная часть также в виде суммы. Например, в таком виде представляется годовой бюджет организации.

На основе статистических данных могут строиться не только балан­совые, но и корреляционно-регрессионные модели.

Если функция Y зависит не только от переменных х1, , х2, … хn , но и от других факторов, связь между Y и х1, , х2, … хn является неточной или корреляционной в отличие от точной или функциональной связи. Корреляционными, например, в большинстве случаев являются связи, наблюда­ющиеся между выходными параметрами ОПС и факторами ее внутренней и внешней среды (см. тему 5).

Корреляционно-регрессионные модели получают при исследовании влияния целого комплекса факторов на величину того или иного признака путем примене­ния статистического аппарата. При этом ставится задача не только установить корреляционную связь, но и выразить эту связь аналитически, то есть подобрать уравнения, описываю­щие данную корреляционную зависимость (уравнение регрессии).

Для нахождения численного значения параметров уравне­ния регрессии пользуются методом наименьших квадратов. Суть этого метода состоит в том, чтобы выбрать такую линию, при которой сумма квадратов отклонений от нее ординат Y отдель­ных точек была бы наименьшей.

Корреляционно-регрессионные модели часто используются при исследовании явлений, когда возникает необходимость установить зависимость между соответствующими характеристиками в двух и более рядах. При этом преимущественно используется парная и множественная линейная регрессия вида

 

y = ax + b ,

y = a1x1 + a2x2 + … + anxn + b .

 

В результате применения метода наименьших квадратов ус­танавливаются значения параметров a или a1, a2, …, an и b, а затем выполняются оценки точности аппроксимации и значимости полученного уравнения регрессии.

В особую группу выделяют графоаналитиче­ские модели. Они используют различные графические изображения и поэтому обладают хорошей наглядностью.

Теория графов - одна из теорий дискретной математики, изучает графы, под которыми понимается совокупность точек и линий их соединяющих. Граф - это самостоятельный математи­ческий объект (впервые ввел Кёниг Д.). На основе теории гра­фов наиболее часто строят древовидные и сетевые модели.

Древовидная модель (дерево) - это неориентированный связ­ный граф, не содержащий петель и циклов. Примером такой модели является дерево целей.

Сетевые модели нашли широкое применение в управлении производством работ. Сетевые модели (графики) отражают последовательность выполнения работ и продолжи­тельность каждой работы (рисунок 8.3).

 

 

Рисунок 8.3 - Сетевая модель производства работ

 

Каждая линия сетевого графика - это некоторая работа. Цифра рядом с ней означает продолжительность ее выполнения.

Сетевые модели позволяют найти так называемый критический путь и оптимизировать график производства работ по времени при ограничениях на другие ресурсы.

Сетевые модели могут быть детерминированными и стоха­стическими. В последнем случае продолжительности выполнения работ задаются законами распределения случайных величин.

Оптимизационные модели служат для определения оптимальной траектории достижения системой поставленной цели при наложении некоторых ограничений на управление ее поведениям и движением. В этом случае оптимизационные модели описывают различного рода задачи нахождения экстремума некоторой целевой функции (критерия оптимизации).

Для выявления оптимального способа достижения цели управления в условиях ограниченных ресурсов – технических, материальных, трудовых и финансовых – применяют методы исследования операций. К ним относятся методы математическо­го программирования (линейное и нелинейное, целочисленное, ди­намическое и стохастическое программирование), аналитические и вероятностно-статистические методы, сетевые методы, методы тео­рии массового обслуживания, теории игр (теории конфликтных си­туаций) и др.

Оптимизационные модели применяются для объемного и календар­ного планирования, управления запасами, распределения ресурсов и работ, замены, параметризации и стандартизации оборудования, рас­пределения потоков товарных поставок на транспортной сети и дру­гих задач управления.

Одним из основных достижений теории исследования операций считается типизация моделей управления и методов решения задач. Например, для решения транспортной задачи, в зависимости от ее раз­мерности, разработаны типовые методы — метод Фогеля, метод по­тенциалов, симплекс-метод. Также при решении задачи управления запасами, в зависимости от ее постановки, могут использоваться ана­литические и вероятностно-статистические методы, методы динами­ческого и стохастического программирования.

В управлении особое значение придается сетевым методам плани­рования. Эти методы позволили найти новый и весьма удобный язык для описания, моделирования и анализа сложных многоэтапных работ и проектов. В исследовании операций значительное место отво­дится совершенствованию управления сложными системами с при­менением методов теории массового обслуживания (см. раздел8.3) и аппарата марков­ских процессов.

Модели марковских случайных процессов — система дифференци­альных уравнений, описывающих функционирование системы или ее процессов в виде множества упорядоченных состояний на некоторой траектории поведения системы. Этот класс моделей широко исполь­зуется при математическом моделировании функционирования слож­ных систем.

Модели теории игр служат для выбора оптимальной стратегии в ус­ловиях ограниченной случайной информации или полной неопреде­ленности.

Игра — математическая модель реальной конфликтной си­туации, разрешение которой ведется по определенным правилам, алгоритмам, описывающим некоторую стратегию поведения лица, принимающего решение в условиях неопределенности.

Различают «игры с природой» и «игры с противником». Исходя из ситуации опре­деляются методы и критерии оценки принятия решений. Так, при «играх с природой» применяют критерии: Лапласа, максиминный (кри­терий Вальда) и минимаксный, Гурвица и Сэвиджа и ряд других алго­ритмических правил. При «играх с противником» для принятия реше­ний используются платежные матрицы, максиминный и минимаксный критерии, а также специальные математические преобразования в свя­зи с тем, что лицу, принимающему решение, противостоит недобро­желательный противник.

Рассмотренные типы математических моделей не охватыва­ют всего их возможного многообразия, а лишь характеризуют отдельные виды в зависимости от принятого аспекта классифи­кации. В.А.Кардашем была предпринята попытка создания сис­темы классификации моделей по четырем аспектам детализации (рисунок 8.4).

 

  Временной аспект  
статические динамические
Социальный, организационный, технологический аспекты     Однокритериальные модели     Детерминированные Стохастический аспект
Стохастические
  Модели, учитывающие взаимодействие интересов Детерминированные
Стохастические
  А В А В  
Пространственный аспект

 

А - модели без пространственной дифференциации параметров;

В - модели с пространственной дифференци­ацией параметров

 

Рисунок 8.4 - Классификация моделей по четырем аспектам детализации

С развитием вычислительных средств одним из распространенных методов принятия решений выступает деловая игра, представляющая собой численный эксперимент с активным участием человека. Существуют сотни деловых игр. Они применяются для изу­чения целого ряда проблем управления, экономики, теории организа­ции, психологии, финансов и торговли.








Дата добавления: 2014-12-27; просмотров: 24508;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.015 сек.