Определение погрешности косвенных измерений

Погрешности измеряемых и табличных величин обуславливают погрешности DХср косвенно определяемой величины, причем наибольший вклад в DХср дают наименее точные величины, имеющие максимальную относительную погрешность d. Поэтому, для повышения точности косвенных измерений, необходимо добиваться равноточности прямых измерений

(dА, dВ, dС, … ).

Правила нахождения погрешностей косвенных измерений:

1. Находят натуральный логарифм от заданной функции

ln{X = f(A,B,C,…)};

2. Находят полный дифференциал (по всем переменным) от найденного натурального логарифма заданной функции;

3. Заменяют знак дифференциала d на знак абсолютной погрешности D;

4. Заменяют все «минусы», стоящими перед абсолютными погрешностями DА, DВ, DС, … на «плюсы».

В результате получается формула наибольшей относительной погрешности dx косвенно измеренной величины Х:

dx = = j (Aср, Bср, Cср, …, DAср, DBср, DCср, …). (18)

По найденной относительной погрешности dx определяют абсолютную погрешность косвенного измерения:

ср = dx . Хср . (19)

Результат косвенных измерений записывают в стандартном виде и изображают на числовой оси:

X = (Xср ± DХср), ед.изм. (20)

 

 

Рис. 2.2.

Пример:

Найти значения относительной и средней погрешностей физической величины L, определяемой косвенно по формуле:

, (21)

где π, g, t, k, α, β – величины, значения которых измерены или взяты из справочных таблиц и занесены в таблицу результатов измерений и табличных данных (подобную табл.1).

1. Вычисляют среднее значение Lср, подставляя в (21) средние значения из таблицы – πср , gср , tср , kср , αср , βср .

2. Определяют наибольшую относительную погрешность δL :

a). Логарифмируют формулу (21):

(22)

b). Дифференцируют полученное выражение (22):

(23)

c).Заменяют знак дифференциала d на Δ, а «минусы» перед абсолютными погрешностями – на «плюсы», и получают выражение для наибольшей относительной погрешности δL :

δL =

d). Подставляя в полученное выражение средние значения входящих величин и их погрешностей из таблицы результатов измерений, вычисляют δL .

3. Затем вычисляют абсолютную погрешность ΔLср:

Результат записывают в стандартном виде и изображают графически на оси L:

, ед. изм.

 

 
 









Дата добавления: 2014-12-20; просмотров: 2365;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.