Говорят, что уравнение
F(x, y) = 0 (2)
неявно задаёт функцию y = f(x) в интервале (a, b), если для любого уравнение F(x0; y)=0 имеет единственное решение y0 = f(x0).
Для нахождения производной функции , заданной неявно уравнением (2), следует продифференцировать обе части равенства (2), считая функцией от ; затем полученное уравнение, в которое будут входить x, y и , следует разрешить относительно .
Для нахождения равенство (2) дифференцируется дважды, в результате чего получается уравнение, содержащее x, y, , , которое следует разрешить относительно , затем вместо подставить функцию от x и y, найденную указанным выше способом.
Пример 6.Найти значения , , если функция y задана неявно уравнением
. (3)
Решение. Считая y функцией от x, продифференцируем обе части равенства (3): ;
; . (4)
Отсюда находим
; (5)
.
Для нахождения y(0) в равенстве (3) положим x = 0:
; ; y(0) = 1.
Таким образом,
.
Найдём , для чего продифференцируем равенство (4):
;
;
.
Подставив в последнем равенстве вместо выражение (5), получим
,
откуда находим
.
Если функция y = y(x) задана параметрическими уравнениями
то при условии существования производных , и существует производная и при этом
.
Вторая производная находится по формуле
,
или (что то же самое)
.
Пример 7. Найти , , если
Решение. Имеем:
; ;
;
6. Уравнения касательной и нормали
Уравнение касательной к графику функции y = f(x) в точке M(x0, y0) имеет вид
,
а уравнение нормали в той же точке ,
где y0 = f (x0).
Пример 8. Найти площадь треугольника, образованного прямой y = y0 +1, касательной и нормалью, проведёнными к графику
функции y = x3 + 2x2 – x + 1 в точке с абсциссой x0 = 1 и ординатой y0 .
Решение. Найдём ординату y0 точки касания и :
;
; .
Уравнением касательной является y = 3 + 6(x – 1) или 6x – y – 3 = 0. Уравнение нормали имеет вид или x + 6y – 19 = 0. Найдём координаты точек А и В (см. рисунок) прямой .
Вычислим длины катетов АС и ВС прямоугольного треугольника АВС:
,
.
По этим данным найдём искомую площадь
7. Дифференциал первого порядка
Придадим аргументу x в точке x0 приращение , функция y = f(x) получит приращение . Если существует число А, такое что
, (6)
то говорят, что f(x) дифференцируемая в точке x0; линейная часть приращения функции называется дифференциалом функции в точке x0 и обозначается или (или просто df , dy). Если x – независимое переменное (т.е. не зависит от других переменных), то полагают .
Теорема 2. Функция f(x) дифференцируема в точке x0 в том и только в том случае, если f(x) имеет производную в этой точке. При этом .
Если в равенстве (6) отбросить бесконечно малую величину , то получим приближённое равенство
,
которое применяется для нахождения приближённого значения функции.
8. Дифференциалы высших порядков. Формула Тейлора
Дифференциалом второго порядка d2f(x) функции называется дифференциал от дифференциала , где рассматривается как функция от x: d2f = d(df). Дифференциалом третьего порядка d3f называется дифференциал от второго дифференциала: d3f = d(d2f) и т.д.
Если переменная x является независимой, то d2x = d3x = … = 0. В этом случае , ,..., ,… Для краткости вместо (dx)n принято писать dxn; с учётом этого .
Если функция f(x) определена в некоторой окрестности точки x0 и в этой окрестности имеет производные до (n+1) -го порядка включительно (т.е. дифференцируема (n+1) раз), то справедлива формула Тейлора
,
где Rn+1 (x) – остаточный член, являющийся бесконечно малой величиной при x ® x0. Остаточный член обычно записывают в виде
,
в форме Пеано или в форме Лагранжа
,
где с – некоторое число между x0 и x. Формула Тейлора допускает и другую запись через дифференциалы
.
Формулу Тейлора применяют для приближенных вычислений.
Дата добавления: 2019-07-26; просмотров: 278;