Осесимметричные оболочки вращения. Их основные нагрузки и напряжения. Уравнения Лапласа.
Оболочка вращения называется осесимметричнойесли она нагружена: силами распределенными симметрично вокруг оси; краевыми силами, распределенными равномерно по параллельному кругу; краевыми моментами, равномерно распределенными по параллельному кругу.
Самым общим случаем нагружения каждой точки поперечного сечения осесимметричных оболочек вращения действуют следующие удельные нагрузки, распределенные равномерно по толщине стенки оболочки:
1. S – меридиональная сила – это сила приходящаяся на единицу длины параллельного круга и растягивающая элемент в меридиональном направлении.
2.Т – кольцевая сила – это сила приходящаяся на единицу длины меридиана и стремящаяся растянуть элемент в направлении параллельного круга.
3.М – меридиональный момент – это момент, приходящийся на единицу длины параллельного круга и стремящийся изменить кривизну элемента в направлении меридиана.
4.К – кольцевой момент – изгибающий момент, приходящийся на единицу длины меридиана и стремящийся изменить кривизну элемента в направлении параллельном меридиана.
5.Q – поперечная сила – это сила, приходящаяся на единицу длины меридиана.
Напряжения, возникающие от действия удельных нагрузок определяются если предположить, что грани элемента к которому приложена нагрузка имеют форму прямоугольника с основанием равным 1 и высотой равной толщине стенки аппарата.
Согласно принципа суперпозиции (независимости действия сил) одноименные силы суммируются
Вывод: таким образом самым общим случаем нагружения ассиметричные оболочки вращения испытывают действия трех напряжений: меридиональное, кольцевое и касательное, которые учитывают действие всех внутренних удельных нагрузок.
Теория расчета оболочек, которая учитывает действие всех внутренних удельных нагрузок – моментная теория расчета.
На практике при расчете тонкостенных оболочек вращения, находящихся под действием равномерно распределенного давления поперечную силу и изгибающие моменты не учитывают. Такую теорию расчета называют безмоментной теорией расчета оболочек.
Основным уравнением безмоментной теории расчета на прочность ассиметричных оболочек вращения нагруженных давлением является уравнение Лапласа.
,
Р – внутреннее давление;
δ – толщина стенки оболочки.
Лекция №4.
Дата добавления: 2019-02-07; просмотров: 1521;