Mental model principles

6. Principle of pictorial realism. A display should look like the variable that it represents (e.g. high temperature on a thermometer shown as a higher vertical level). If there are multiple elements, they can be configured in a manner that looks like it would in the represented environment.

7. Principle of the moving part. Moving elements should move in a pattern and direction compatible with the user's mental model of how it actually moves in the system. For example, the moving element on an altimeter should move upward with increasing altitude.

Principles based on attention

8. Minimizing information access cost. When the user's attention is diverted from one location to another to access necessary information, there is an associated cost in time or effort. A display design should minimize this cost by allowing for frequently accessed sources to be located at the nearest possible position. However, adequate legibility should not be sacrificed to reduce this cost.

9. Proximity compatibility principle. Divided attention between two information sources may be necessary for the completion of one task. These sources must be mentally integrated and are defined to have close mental proximity. Information access costs should be low, which can be achieved in many ways (e.g. proximity, linkage by common colours, patterns, shapes, etc.). However, close display proximity can be harmful by causing too much clutter.

10. Principle of multiple resources. A user can more easily process information across different resources. For example, visual and auditory information can be presented simultaneously rather than presenting all visual or all auditory information.

Memory principles

11. Replace memory with visual information: knowledge in the world. A user should not need to retain important information solely in working memory or retrieve it from long-term memory. A menu, checklist, or another display can aid the user by easing the use of their memory. However, the use of memory may sometimes benefit the user by eliminating the need to reference some type of knowledge in the world (e.g., an expert computer operator would rather use direct commands from memory than refer to a manual). The use of knowledge in a user's head and knowledge in the world must be balanced for an effective design.

12. Principle of predictive aiding. Proactive actions are usually more effective than reactive actions. A display should attempt to eliminate resource-demanding cognitive tasks and replace them with simpler perceptual tasks to reduce the use of the user's mental resources. This will allow the user to focus on current conditions, and to consider possible future conditions. An example of a predictive aid is a road sign displaying the distance to a certain destination.

13. Principle of consistency. Old habits from other displays will easily transfer to support processing of new displays if they are designed consistently. A user's long-term memory will trigger actions that are expected to be appropriate. A design must accept this fact and utilize consistency among different displays.

Human–computer interface

Main article: User interface

The human–computer interface can be described as the point of communication between the human user and the computer. The flow of information between the human and computer is defined as the loop of interaction. The loop of interaction has several aspects to it, including:

· Visual Based :The visual based human computer inter-action is probably the most widespread area in HCI research.

· Audio Based : The audio based interaction between a computer and a human is another important area of in HCI systems. This area deals with information acquired by different audio signals.

· Task environment: The conditions and goals set upon the user.

· Machine environment: The environment that the computer is connected to, e.g. a laptop in a college student's dorm room.

· Areas of the interface: Non-overlapping areas involve processes of the human and computer not pertaining to their interaction. Meanwhile, the overlapping areas only concern themselves with the processes pertaining to their interaction.

· Input flow: The flow of information that begins in the task environment, when the user has some task that requires using their computer.

· Output: The flow of information that originates in the machine environment.

· Feedback: Loops through the interface that evaluate, moderate, and confirm processes as they pass from the human through the interface to the computer and back.

· Fit: This is the match between the computer design, the user and the task to optimize the human resources needed to accomplish the task.

Current research

User customization

End-user development studies how ordinary users could routinely tailor applications to their own needs and use this power to invent new applications based on their understanding of their own domains. With their deeper knowledge of their own knowledge domains, users could increasingly be important sources of new applications at the expense of generic systems programmers (with systems expertise but low domain expertise).








Дата добавления: 2018-11-25; просмотров: 331;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.