Свойства бинарных алгебраических операций

Условимся, чтобы последующие соотношения выглядели более привычно, результат применения бинарной операции к элементам а и b записывать не в функциональном виде , а в виде (как это принято в арифметических операциях).

 

Операция называется ассоциативной, если для любых элементов а, b, с

.

Выполнение условия ассоциативности означает, что скобки в выражении можно не расставлять.

Пример:

1. Сложение и умножение чисел ассоциативны, что позволяет не ставить скобки в выражениях и .

2. Возведение в степень – не ассоциативна, так как

не равно .

3. Композиция отображений – ассоциативная операция.

 

Операция называется коммутативной, если для любых элементов a, b

.

Пример:

1. Сложение чисел коммутативно («от перемены мест слагаемых сумма не меняется»): .

Умножение чисел коммутативно: .

2. Вычитание и деление – некоммутативные операции.

Умножение матриц – некоммутативная операция, например:

, но .

 

Операция называется дистрибутивной слева относительно операции , если для любых a, b, с

.

Операция называется дистрибутивной справа относительно операции , если для любых a, b, с

.

Дистрибутивность разрешает раскрыть скобки.

Примеры:

1. Умножение дистрибутивно относительно сложения слева и справа

; .

2. Возведение в степень дистрибутивно относительно умножения справа.

,

но не слева, так как не равно

.

3. Сложение не дистрибутивно относительно умножения

,

.








Дата добавления: 2018-09-24; просмотров: 793;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.