Виды систем массового обслуживания

В зависимости от того, как поступают с заявкой в случае, если все каналы оказались занятыми, различают:

СМО с отказом в обслуживании заявки и СМО с ожиданием.

 

Для СМО с отказом характерно, что заявка, заставшая все каналы занятыми, немедленно покидает систему.

 

В СМО с ожиданием заявка, заставшая все каналы занятыми, не покидает систему, а ставится в очередь и при освобождении одного из каналов обслуживается. В СМО с ожиданием на процесс ожидания заявок в очереди могут накладываться или не накладываться какие-либо ограничения. В последнем случае говорят, что имеют дело с "чистой" СМО с ожиданием. Если же на процесс ожидания накладываются ограничения, то СМО называют "системой смешанного типа". В таких системах из-за наложенных ограничений возможны случаи, когда заявка получит отказ в обслуживании, т.е. СМО смешанного типа проявляет также признаки СМО с отказом.

В системах смешанного типа могут накладываться следующие ограничения:

а) на количество заявок, стоящих в очереди;

б) на время пребывания заявки в очереди;

в) на общее время нахождения заявки в СМО.

 

В технологии РЭУ чаще всего встречаются СМО смешанного типа.

Математическое описание СМО с отказом

Рассмотрим систему массового обслуживания с отказом, имеющую п каналов. Предположим, что поток заявок, поступающих в СМО, простейший и имеет плотность l. Кроме того, будем считать, что время обслуживания заявок распределено по экспоненциальному закону с параметром

где М(Тоб) — математическое ожидание времени обслуживания заявки.

 

Следовательно, плотность распределения времени обслуживания

Для рассматриваемой системы возможны следующие состояния:

x0 — свободны все каналы;

x1 занят один канал;

¼

xk -- занято k каналов;

¼

xn-- заняты все п каналов.

Данные состояния системы обслуживания могут быть описаны дифференциальными уравнениями Эрланга[18]. их решение позволяет получить формулы для расчета вероятностей, которые для установившегося режима постоянны. Такой режим наступает при времени t® ¥.

где pk -- вероятность состояния хk;
  a — приведенная плотность заявок или коэффициент загрузки канала.

Коэффициент определяют как

где М(Тоб) — математическое ожидание времени обслуживания одной заявки.

Формулы Эрланга получены для случая экспоненциального распределения времени обслуживания, но справедливы и при любом другом законе, лишь бы поток заявок был простейшим.

Вероятность необслуживания заявки определяется как

Относительная пропускная способность q

Среднюю долю времени, которое система обслуживания будет простаивать, можно определить вероятностью состояния x0, т.е.

Рпростоя = р(х0) = р0

Пример. Пусть на участок ремонта технологического оборудования поступают приборы со средней плотностью l = 2 ед/ч. Среднее время обслуживания одной единицы оборудования равно 24 мин (0,4 ч.). Заявка, заставшая все каналы занятыми получает отказ в обслуживании.

Требуется определить характеристики СМО в предположении наличия одного рабочего места. Кроме того, требуется установить, как меняются характеристики СМО при введении второго рабочего места.

Решение. По условию задачи имеем СМО с отказом. Будем предполагать, что поток заявок, поступающих в СМО, простейший со средней плотностью l.

1. Подсчитаем коэффициент загрузки канала или приведенную плотность заявок

2. Найдем характеристики СМО при числе каналов n=1. Вероятность необслуживания заявок:

Относительная пропускная способность q определится, как

q=1- Рнеоб = 1 – 0,44 = 0,56.

Следовательно, примерно 56% заявок, поступивших в СМО, будут обслужены.

Вероятность простоя канала р0

3. Определим, как меняются характеристики системы с введением второго канала. Для этого подсчитаем характеристики СМО при значении п = 2. Получим:

Относительная пропускная способность q = 0,85 или 85%,а доля времени простоя системы уменьшилась до 47%.








Дата добавления: 2017-02-20; просмотров: 2871;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.