Механическое сглаживание по скользящим средним

Методы сглаживания временных рядов

 

Очень часто уровни экономических рядов динамики колеблются. При этом тенденция развития экономического явления во времени скрыта случайными отклонениями значений ряда в ту или иную сторону. С целью более чёткого выявления тенденции развития исследуемого процесса производят сглаживание (выравнивание) временных рядов экономических показателей. Суть различных методов сглаживания сводится к замене фактических уровней временного ряда расчётными значениями, которые подвержены колебаниям в меньшей степени. Это способствует чёткому проявлению тенденции.

Методы сглаживания временных рядов делятся на две основные группы:

1) аналитическое выравнивание с использованием кривой, проведённой между конкретными уровнями ряда так, чтобы она отображала тенденцию, присущую ряду, и одновременно освобождала его от незначительных колебаний;

2) механическое выравнивание отдельных уровней временного ряда с использованием фактических значений соседних уровней.

Суть методов аналитического сглаживания основана на том математическом правиле, что через любые n точек, лежащих на плоскости, можно провести полином минимум (n – 1) степени так, что он будет проходить через все обозначенные точки.

Суть методов механического сглаживания заключается в том, что берётся несколько уровней ряда динамики, образующих интервал сглаживания. Для них подбирается полином, степень которого должна быть меньше числа уровней, входящих в интервал сглаживания. С помощью полинома определяются сглаженные значения уровней ряда в середине интервала сглаживания. Далее интервал сглаживания сдвигается на одно наблюдение вперёд, вычисляется следующее сглаженное значение и т.д.

 

Механическое сглаживание по скользящим средним

 

Самым простым методом механического сглаживания является сглаживание по простой скользящей средней. Метод называется так потому, что в его основе лежит вычисление простого среднего значения нескольких уровней ряда. Простое среднее скользит вдоль ряда динамики с шагом равным периоду наблюдений.

Сначала для временного ряда yt определяется интервал сглаживания m, причём m < n. Если необходимо сгладить мелкие беспорядочные колебания, то интервал сглаживания берут по возможности большим; интервал сглаживания уменьшают, если нужно сохранить более мелкие колебания. Чем шире интервал сглаживания, тем в большей степени взаимопогашаются колебания, и тенденция развития носит более плавный характер. Чем сильнее колебания, тем шире должен быть интервал сглаживания. При одинаковых условиях рекомендуется использовать интервал сглаживания нечётной длины. Для первых m уровней временного ряда вычисляется их средняя арифметическая; это будет сглаженное значение уровня ряда, находящегося в середине интервала сглаживания.

Для вычисления сглаженных значений используется формула:

(4.1),

где m = 2·p + 1 – интервал сглаживания временного ряда нечётной длины. В результате такой процедуры получаются (n – m + 1) сглаженных значений уровней ряда.

Процедуру сглаживания можно применять и для интервала сглаживания чётной длины. Особенно это актуально для анализа и прогнозирования явлений, имеющих сезонные колебания. При сглаживании сезонных процессов интервал сглаживания обязательно должен быть равен длине сезонной волны. В противном случае произойдёт искажение компонент временного ряда, в особенности, компоненты vt. В случае, когда используется интервал сглаживания чётной длины, т.е. m = 2·p, применяется формула:

(4.2).

В результате данной процедуры получаются (n – m) сглаженных значений уровней ряда.

В любом случае первые и последние p значений ряда не сглаживаются. Потерянные сглаженные значения уровней временного ряда находятся с помощью использования показателя среднего абсолютного прироста, найденного для первого и последнего интервалов сглаживания. Для восстановления потерянных наблюдений в начале временного ряда значение величины среднего абсолютного прироста, найденное для первого интервала сглаживания, вычитается из первого сглаженного значения. Получается сглаженное значение уровня ряда для yp. Далее алгоритм повторяется до получения сглаженного значения y1. Для восстановления потерянных наблюдений в конце временного ряда значение величины среднего абсолютного прироста, найденное для последнего интервала сглаживания, прибавляется к последнему сглаженному значению. Получается сглаженное значение уровня ряда для ynp + 1. Далее алгоритм повторяется до получения сглаженного значения yn.

Ещё один недостаток метода простой скользящей средней заключается в том, что он может использоваться лишь для рядов, имеющих линейную тенденцию. Если для процесса характерно нелинейное развитие и необходимо сохранить изгибы тенденции, то применение простой скользящей средней нецелесообразно, т.к. это может привести к существенным искажениям. В таких случаях используется метод взвешенной скользящей средней.

Метод взвешенной скользящей средней отличается от метода простой скользящей средней тем, что уровни, входящие в интервал сглаживания, суммируются с разными весами. Это связано с тем, что аппроксимация исходного ряда в пределах интервала сглаживания осуществляется с использованием полинома не первой степени, как в методе простой скользящей средней, а степени, начиная со второй. Используется формула средней арифметической взвешенной:

(4.3),

где веса ρt симметричны относительно среднего значения и определяются с помощью метода наименьших квадратов. Эти веса рассчитаны для различных степеней аппроксимирующего полинома и различных интервалов сглаживания.

Единственным недостатком данного метода является потеря сглаженных наблюдений на концах экономического ряда динамики. Алгоритм восстановления пропущенных значений аналогичен описанному в методе простой скользящей средней.

 








Дата добавления: 2018-06-28; просмотров: 1096;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.