Деструкция растворенного и взвешенного органического вещества в океане 4 страница

Поэтому та патогенность, которая характеризуется быстрым инкубационным периодом и непродолжительной болезнью, завершающейся смертью, - это только проявление первой стратегии паразитизма. В этой стратегии продолжительность инфекционного процесса лимитируется иммунной системой хозяина (вернее, эволюционно сложившейся для данного биологического вида нормой иммунного ответа). Отсюда можно прийти к выводу о существовании стратегий паразитизма, при которых продолжительность болезни хозяина будет ограничена продолжительностью его жизни (вторая стратегия) и даже продолжительностью жизни его вида (третья стратегия).

Эволюционная модель показывает, что каждый пандемический процесс, имевший место в последние шесть столетий, не походил на предыдущий. Во-первых, бактериальный возбудитель пандемий (чумы), был сменен сначала вирусным возбудителем с ДНК-геномом (ВНО), а затем вирусными с РНК-геномами (грипп, ВИЧ). Этот процесс сопровождался изменением механизмов их передачи. Механизм передачи через укусы насекомых (чума) вытеснен воздушно-капельным (оспа, грипп), затем значительно менее зависимыми от влияния внешней среды, половым и гематогенным (ВИЧ). Одновременно повышается специфичность их поражающего действия.

Во-вторых, в ходе смены пандемических возбудителей последовательно уменьшались объективные возможности человеческого общества по ограничению их распространения в собственных популяциях. Что касается ВИЧ, то в нашем распоряжении вообще нет механизма, способного ограничить его распространение.

В третьих, пандемия - явление качественно иного порядка, чем эпидемия. На уровне субъективного восприятия каждая новая пандемия выглядит так, как будто она учитывает неудачи предыдущей и хотя бы на шаг опережает возможности науки данного исторического периода.

После СПИДа. Дальнейшее развитие пандемии СПИДа порождает две взаимоисключающие тенденции.

1) ВИЧ - только одним из представителей множества вирусов, которые интегрируются с геномом человека. Между представителями данного семейства вирусов также возможна конкуренция за территорию своего обитания (то есть за геном человека), в результате которой на ней останется лишь наиболее приспособленный вид.

2) Распространение СПИДа, лейкозов, сывороточных гепатитов, широкое использование в клинической практике цитостатиков (препаратов, блокирующих размножение раковых клеток) и иммунодепресантов ведет к постепенному снижению иммунной защиты у миллионов компактно проживающих представителей вида Homo sapiens. Это, в свою очередь, создает условия для проникновения, а потом и "заселения" новых микроорганизмов-паразитов. В этих условиях значительно облегчается отбор и формирование среди микроорганизмов высокоспециализированных и контагиозных эпидемических вариантов с упрощенным геномом (Пример с туберкулезом в Америке.).

Третья стратегия. Внутренняя логика и преемственность приведенных в эволюционной модели событий позволяют предположить, что если пандемия СПИДа не самоограничится, то следующая пандемия будет вызвана микроорганизмом, использующим третью стратегию паразитизма. Этот процесс начнется из-за конкурентной борьбы ретровирусов за влияние на геном хозяина как между собой, так и с теми мобильными элементами хромосом, которые, возможно, играют роль "защитных экранов" генома от таких вирусов. Преимущество получит тот микроорганизм, который будет способен к более эффективной интеграции с геномом и к противодействию защитным системам хозяина.

Клинические проявления новой болезни представить довольно трудно. Ими могут быть быстро прогрессирующие онкологические болезни, иммунодефициты, мышечная дистрофия, психические нарушения, дефекты развития и другие поражения генетического характера. Однако если исходить из того, что новый возбудитель окажется способен осваивать экологические ниши вытесняемого им ВИЧ, то наиболее вероятна патология, связанная с дефектами ДНК Т-лимфоцитов, клеток, выстилающих внутреннюю поверхность кровеносных и лимфатических cосудов, эпителиальных клеток кожи и нейронов мозга. Инкубационный период болезни, по-видимому, будет превышать таковой у СПИДа. К механизмам переноса нового возбудителя может добавиться еще один - наследственный.

Отсюда возможная длительность пандемического процесса - от нескольких десятилетий и, вполне вероятно, до столетий. При активном же использовании технологий генной терапии возможно частичное стирание различий между патологией наследственной и инфекционной. Отдаленным последствием пандемического распространения такого микроорганизма станет формирование обширных популяций генетически обреченных людей.

Следует подчеркнуть, что последние достижения геномики и популяционной генетики свидетельствуют о генетической предрасположенности популяций человека и даже индивидуумов к тем или иным заболеваниям, в том числе инфекционным.

 

12 Экзобиология и микроорганизмы

 

12.1 Фундаментальные свойства живых систем

«Вечное молчание этих бесконечных пространств ужасает меня», — раз заглянув в ночное небо, записал французский ученый и философ Блез Паскаль. Но он жил в Париже времени мушкетеров: тогда о бесконечных пространствах Вселенной и знали, и задумывались еще очень мало. Хотя и Галилей, и Ньютон уже наблюдали звезды в телескоп, последний мало еще чем отличался от сильной подзорной трубы. До сенсационного открытия марсианских «каналов» Джованни Скиапарелли в 1878 году оставалось чуть более 200 лет, однако ужас одиночества, испытанный Паскалем, оказался все же фундаментальнее эйфорических представлений «цивилизованного человечества», уверившегося в начале XX века в повсеместном заселении Вселенной. Сейчас просто невозможно себе представить, насколько упрямой оказалась эта вера и какое разочарование принесли землянам первые полеты автоматических станций на Луну, Венеру и Марс, передав на Землю первые, лишенные фантастических представлений, сведения о том, что никакой жизни на этих планетах не обнаружено, а судя по окружающей обстановке, и не может быть обнаружено.

Экзобиология – наука о формах внешней («экзо») по отношению к Земле жизни. Этот термин, предложенный в 1960 нобелевским лауреатом, генетиком Дж. Ледербергом, это определение не охватывает поиск внеземного разума (SETI) и межзвездную связь на электромагнитных волнах. Многие ученые используют сейчас термин «биоастрономия» для обозначения исследований, направленных на поиск жизни во Вселенной.

Один из ведущих специалистов в этой области, член-корреспондент РАН, директор Института микробиоогии РАН В.Ф. Гальченко, так определил сферу интересов этой необычной дисциплины: как наука экзобиология может относиться и к палеонтологии, и к биологии. А предмет ее исследования... виртуален. Ибо мы до сих пор не знаем ни одной формы жизни за пределами Земли. И судить о том, какой могла бы быть эта жизнь, мы можем только по аналогии с ее земными формами. Ведь материя Вселенной — одна и строится из «кирпичиков» системы элементов. Поэтому и жизнь вне Земли будет, скорее всего, подчиняться тем же законам, что и на Земле, как бы парадоксально это ни звучало.

Ряд фундаментальных свойств живых систем земного происхождения действительно имеет ряд общих свойств, и поэтому эти свойства, несомненно, должны характеризовать и внеземные организмы. Сюда можно отнести такие хорошо известные биологам и наиболее характерные признаки живого, как способность организмов реагировать на изменение внешних условий, метаболизм, рост, развитие, размножение организмов, наследственность и изменчивость, процесс эволюции.

Не будет сомнения в принадлежности к живым системам неизвестного объекта при обнаружении у него перечисленных признаков. Но реакция на внешнее раздражение присуща и неживым системам, изменяющим свое физическое и химическое состояние под влиянием внешних воздействий. Способность к росту свойственна кристаллам, а обмен энергией и веществом с внешней средой характерен для открытых химических систем. Поиски внеземной жизни должны, поэтому основываться на применении совокупности разных критериев существования и методов обнаружения живых форм.

Выстроить химически-непротиворечивую модель какой-то иной жизни до сих пор не удалось, хотя попытки такого рода предпринимались. Причем самые радикальные.

Известно, что основой земной жизни является углерод — в силу способности его атомов составлять длинные цепочки, сцепляясь друг с другом и с другими соединениями и образовывать сложные и пластичные формы, которые в конечном счете выходят за пределы чисто химического синтеза на новый уровень, постепенно наращивая и усложняя обмен энергией между атомами, обмен веществ, налаживая процессы деления... Иначе говоря, приобретая все признаки живой материи. Первая же попытка построить модель другой жизни заключалась как раз в том, чтобы углерод заменить, скажем, на кремний, поскольку по ряду свойств эти элементы схожи друг с другом. Но чем заменить кислород? Фтором — опять же в силу некоей гипотетической «схожести». А чем заменить водород, который из-за своих химических свойств оказывается идеальным носителем энергии? Нечем. Однако свойства кремний-фторо-водородных соединений резко меняются. Они теряют пластичность и образуют очень жесткие молекулярные решетки. И моделируемая нами жизнь начинает напоминать... кристаллы. Она теряет жизненную гибкость и возвращается обратно в мир неорганической химии.

В свое время Джеймс Дьюи Уотсон, один из первооткрывателей ДНК, написал небольшую книгу, в которой рассматривал жизнь с точки зрения атомных и молекулярных сил. И пришел к выводу, что свойства молекулы ДНК (как носителя всей информации о живом организме) определяются атомными свойствами химических элементов, из которых она состоит: С, О, N и Р.. И замена любого из этих элементов на «сходный», скорее всего, приведет к полному нарушению всех функций молекулы и сделает невозможным само продолжение жизни...

Важным аспектом проблемы внеземной жизни является необходимость внешнего притока энергии для ее развития. Солнечный свет, главным образом в ультрафиолетовой области спектра, играл существенную роль в процессах абиогенного синтеза необходимым притоком свободной энергии, и в фотохимическом ускорении дальнейших превращений. Жизнедеятельность первичных живых систем также могла во многом определяться фотохимическими реакциями входящих в их состав соединений. Многие организмы, не имеющие прямого отношения к современному фотосинтезу, тем не менее, изменяют свою активность при освещении.

Следует отметить, что свет мог и не являться единственным источником энергии на ранних этапах эволюции органических соединений. Эту роль могла выполнять и химическая энергия, освобождаемая, например, в реакциях окисления, впоследствии составивших энергетическую основу хемосинтеза. Однако в целом жизнь для своего возникновения и развития требует, очевидно, постоянного внешнего притока свободной энергии, роль которого на Земле и выполняет солнечный свет. Поэтому свет и играет важную роль на всех этапах эволюции жизни, начиная с абиотического синтеза первичных живых систем и кончая современным фотосинтезом, обеспечивающим образования органических веществ на Земле.

Очевидно, существование фотосинтеза в той или иной форме как процесса полезной утилизации энергии в биологических системах является важным критерием существования развитой жизни.

Можно выдвинуть общие принципы, которыми следует руководствоваться при определении критериев существования и поиска внеземной жизни.

1. Основным свойством живой материи является ее существование в виде открытых самовоспроизводящихся систем, которые обладают структурами для сбора, хранения, передачи и использования информации.

2. Углеродосодержащие органические соединения и вода как растворитель составляют химическую основу жизни.

3. Необходимым условием жизни является утилизация энергии света.

4. В живых системах протекают сопряженные химические процессы, в которых происходит передача энергии.

5. В биологических системах могут преобладать асимметрические молекулы, осуществляющие оптическое вращение.

6. Различные организмы, существующие на планете, должны обладать рядом сходных основных черт.

 

12.2 Методы обнаружения внеземной жизни

Как уже говорилось, наиболее сильным доказательством присутствия жизни на планете будет, конечно, рост и развитие живых существ. Поэтому, когда сравниваются и оцениваются различные методы обнаружения жизни вне Земли, преимущество отдается тем методам, которые позволяют с достоверностью установить размножение клеток. А поскольку наиболее распространенными в природе являются микроорганизмы, при поиске жизни вне Земли прежде всего следует искать микроорганизмы. Микроорганизмы на других планетах могут находиться в грунте, почве или атмосфере, поэтому разрабатываются различные способы взятия проб для анализов. В одном из таких приборов - "Гулливере" - предложено остроумное приспособление для взятие пробы для посева. По окружности прибора расположено три небольших цилиндрических снаряда, к каждому снаряду прикреплена липкая силиконовая нить. Взрыв пиропатронов отбрасывает снаряды на несколько метров от прибора. Затем силиконовая нить наматывается и, погружаясь при этом в питательную среду, заражает ее частицами прилипшего к ней грунта.

Размножение организмов в питательной среде может быть установлено с помощью различных автоматических устройств, одновременно регистрирующих нарастание мутности среды (нефелометрия), изменение реакции питательной среды (потенционометрия), нарастание давления в сосуде за счет выделяющегося газа (манометрия).

Очень изящный и точный способ основан на том, что в питательную среду добавляют органические вещества (углеводы, органические кислоты и другие) , содержащие меченный углерод. Размножающиеся микроорганизмы будут разлагать эти вещества, а количество выделившегося в виде углекислоты радиоактивного углерода определит миниатюрный счетчик, прикрепленный к прибору. Если питательная среды будет содержать различные вещества с меченным углеродом (например, глюкозу и белок), то по количеству выделившейся углекислоты можно составить ориентировочное представление о физиологии размножающихся микроорганизмов.

Чем больше разнообразных методов будет использовано для выявления обмена веществ у размножающихся микроорганизмов, тем больше шансов получить достоверные сведения, так как некоторые методы могут подвести, дать ошибочные данные. Например, питательная среда может помутнеть и от попавшей в нее пыли (как, возможно, было с "Викингами" в 1976 г., см. выше). Когда клетки микроорганизмов размножаются, интенсивность всех регистрируемых и передаваемых на Землю показателей непрерывно нарастает. Динамика всех этих процессов хорошо известна, а она надежный критерий действительного роста и размножения клеток. Наконец, на борту автоматической станции может быть два контейнера с питательной средой, и как только в них начинается нарастание изменений, в один из них автоматически будет добавлено сильнодействующее ядовитое вещество, полностью прекращающее рост. Продолжающееся изменение показателей в другом контейнере будет надежным доказательством биогенного характера наблюдаемых процессов.

Конструируемые приборы не должны быть чрезмерно чувствительными, так как перспективы "открыть" жизнь там, где ее нет весьма неприятна.

С другой стороны, прибор не должен дать отрицательный ответ, если жизнь действительно существует на исследуемой планете.

Хотя размножение микроорганизмов и является единственным бесспорным признаком жизни, это не значит, что не существует иных приемов, позволяющих получить ценную информацию. Некоторые краски, соединяясь с органическими веществами, дают комплексы, легко обнаруживаемые, так как они обладают способностью к адсорбции волн строго определенной длины. Один из предложенных методов основан на применении масс - спектрометра, который устанавливает обмен изотопа кислорода О18, происходящий под влиянием ферментов микробов у таких соединений, как сульфаты, нитраты или фосфаты. Особенно хорошо и, главное, разнообразно применение люминесценции.

Следующий этап в исследованиях - применение портативного микроскопа, снабженного поисковым устройством, способным отыскивать в поле зрения отдельные клетки.

Обсуждается также возможность использования электронного микроскопа для изучения структурных элементов микробной клетки, не видимых в оптический микроскоп. Применение электронного микроскопа в сочетании с портативным может чрезвычайно расширить возможности морфологических исследований, что особенно важно для изучения внутренней молекулярной структуры составных элементов живого.

Самым сложным вопросом в методическом отношении будет возможность существования форм жизни, более просто организованных, чем микроорганизмы. Действительно, эти находки, вероятно, представят гораздо больший интерес для решения проблемы возникновения жизни, чем обнаружение таких относительно живых существ, как микроорганизмы.

В заключение можно условно разделить все методы на три группы:

1. Дистанционные методы наблюдения определяют общую обстановку на планете с точки зрения наличия признаков жизни. Дистанционные методы связаны с использованием техники и приборов, расположенных как на Земле, так и на космических кораблях и искусственных спутниках планеты.

2. Аналитические методы призваны произвести непосредственный физико - химический анализ свойств грунта и атмосферы на планете при посадке АБЛ. Применение аналитических методов должно дать ответ на вопрос о принципиальной возможности существование жизни.

3. Функциональные методы предназначаются для непосредственного обнаружения и изучения основных признаков живого в исследуемом образце. С их помощью предполагается ответить на вопрос о наличии роста и размножения, метаболизма, способности к усвоению питательных веществ и других характерных признаков жизни.

 

12.3 Планетарный карантин

Еще с древних времен человечество привлекала перспектива открытия и изучения внеземных форм жизни. Теперь, когда исследование космического пространства стало обыденностью, обнаружение инопланетной жизни или установление ее предшественников является одной из важных целей национальных программ исследований планет многих стран.

Однако успешному исследованию космического пространства угрожает возможность заноса человеком при полете от одной планеты к другой инопланетных форм жизни, что может привести к самым неожиданным последствиям. Занесение и размножение земных форм жизни может уничтожить раз и навсегда благоприятную возможность изучить планеты в присущих им условиях. Планетарный карантин осуществляется для сохранения этой возможности.

В настоящее время осуществление планетарного карантина необходимо по трем причинам:

1. Земная микрофлора, занесенная на планету автоматическими аппаратами или пилотируемыми космическими кораблями, может размножатся и распространяться на ней, что станет препятствием для дальнейших исследований и замаскирует или совсем разрушит жизнь, характерную для данной планеты. Природные условия при этом могут так изменяться, что эта планета уже не будет представлять значительного научного интереса для последующих поколений.

2. Автоматический космический аппарат, предназначенный для определения признаков жизни на планете, не должен быть загрязнен земной микрофлорой; в противном случае приборы будут обнаруживать в первую очередь земную микрофлору, а не внеземную.

3. Земля может быть загрязнена опасными для нее организмами или веществами, занесенными с другой планеты или из космического пространства.

Упомянутые причины, обусловлены необходимостью осуществления карантина, в основном связаны с микроорганизмами как наиболее простым источником заражения в силу того, что они обладают способностью выдерживать воздействие экстремальных факторов окружающей среды и быстро размножаться, интересы науки в области внеземной жизни не ограничиваются только этими живыми формами. Например, обнаружение органических молекул, которые могут быть предшественниками жизни или ее остатками, представляло бы огромную научную значимость.

Одним из наиболее ярких примеров успешного проведения планетарного карантина было проведение карантина при пилотируемых полетах на Луну. Лунная приемная лаборатория обеспечила карантин возвратившихся космонавтов и проб лунного грунта. По мере накопления информации об условиях на Марсе определяется целесообразность изоляции и обеззараживания кораблей, которые будут совершать полеты на эту планету. Поэтому при составлении программы таких полетов надо исходить из необходимости предупреждения загрязнения Земли внеземными формами жизни. Методы такого карантина существенно отличаются от метод предупреждения загрязнения других планет земными организмами.

Один из возможных приемов предотвращения заражения для непилотируемых кораблей включает предварительное исследование возвращаемых образцов на околоземной орбите. Карантин снимается, и образцы доставляются на Землю только в случае, если тесты на биологическую активность окажутся отрицательными.

Другой возможный прием заключается в инкапсуляции возвращаемых образцов до приземления, карантин должен соблюдаться в течение всего периода исследования образцов на Земле.

В настоящее время существуют и действуют ряд национальных и международных программ по проблеме планетарного карантина. Специально для этого был образован в октябре 1958 г. Комитет космических исследований (КОСПАР). Он взял на себя ответственность за изучение проблемы загрязнения и принял ряд резолюций, определяющих цели планетарного карантина для государств, осуществляющих запуски космических кораблей. В резолюции КОСПАР от 1964 г. был впервые определен допустимый предел загрязнения космических аппаратов - один микроорганизм на тысячу полетов.

 

12.4 Влияния факторов космического полета на выживаемость микроорганизмов

В экспериментах, имитирующих условия космоса, показано, что космическая среда менее губительна для микроорганизмов, чем для других, более сложных форм жизни.

Учеными России и США проводятся эксперименты с различными видами микроорганизмов в условиях, имитирующих физические параметры Марса, Венеры и Луны. При параметрах среды, близких к марсианским (перепад температуры от -60 до +35°С, атмосферное давление 7 мм. рт. ст., газовый состав 80 % углекислого газа и 20 % азота) некоторые пустынные микроорганизмы сохраняли способность к росту при относительной влажности, равной 3.8 %.

В одних экспериментах по имитации условий космического пространства обнаружено, что некоторые микроорганизмы и ферменты устойчивы к действию вакуума порядка. Другие исследования выявили способность микроорганизмов сохраняться в условиях вакуума.

Ионизирующая космическая радиация, за исключением излучений солнечных вспышек и радиационных поясов земли, не может рассматриваться как инактивирующий фактор. Известно, например, что обитающие в воде атомных реакторов организмы адаптируются к радиации в 1 млн. р.

Наиболее губительным фактором космического пространства являются ультрафиолетовые лучи. Однако, благодаря высокой степени отражения, поток ультрафиолетовой радиации легко экранируется пылью или другим непрозрачным материалом. Например, верхний слой микроорганизмов может защитить нижележащие клетки.

Хотя жизнь теоретически возможна на любой из планет, на их спутниках и на астероидах, наши возможности пока ограничены (в посылке аппаратуры) Луной, Марсом и Венерой.

 

12.5 Планеты «кандидаты», на которых вероятно обнаружение жизни

12.5.1 Луна, Венера

Большинство ученых считают Луну абсолютно "мертвой" (отсутствие атмосферы, различные излучения и т.д.). Однако некоторые формы могут жить в тени кратеров, особенно если, как показывают последние наблюдения и исследования, там все еще протекает вулканическая деятельность с выделением тепла, газов и водяных паров. Вполне возможно, что, если жизни на Луне нет, то она может быть уже заражена, при несоблюдении ПК (хотя есть данные, показывающие обратное), земной жизнью после прилунения на ней космических аппаратов и кораблей и, возможно, метеоритами, если они могут явиться переносчиками жизни.

Венера также, по-видимому, безжизненна, но по другим причинам. Согласно измерениям температуры на поверхности Венеры слишком высоки для жизни земного типа, а ее атмосфера также негостеприимна. Учеными обсуждалось немало идей на эту тему. Авторы работ по данной теме касались возможности существования биологически активных форм как на поверхности, так и в облаках. В отношении поверхности можно утверждать, что большинство органических молекул, входящих в состав биологических структур, испаряются при температурах, намного меньших 5000° С. К тому же на поверхности нет жидкой воды. Поэтому земные формы жизни, по - видимому, можно исключить.

Довольно искусственными представляются другие возможности, включающие своего рода "биологические холодильники" или структуры на основе кремнийорганических соединений.

Значительно более благоприятным представляются условия в облаках, соответствующие земным на уровне около 50 - 55 км. над Землей, за исключением преобладающего содержания СО2 и практического отсутствия О2.

Тем не менее, в облаках имеются условия для образования фотоаутотрофоф. Однако в условиях атмосферы существенная трудность связана с удержанием таких организмов вблизи уровня с благоприятными условиями, так чтобы они не увлекались в нижележащую горячую атмосферу. Чтобы обойти эту трудность, было выдвинули предположение в венерианских организмах в форме изопикнических баллонов (фотосинтетических), заполняемых фотосинтетическим водородом.

Это все пока только гипотезы, едва ли они могут рассматриваться как с точки зрения возникновения жизни в облаках, так и своего рода "остатков" биологических форм, некогда существовавших на планете. Конечно, это не исключает того, что в определенный период своей истории Венера обладала значительно более благоприятными условиями, пригодными для проявления биологической активности.

Спецификой эволюции, особенностями теплообмена, природой облаков, характером поверхности далеко не исчерпываются проблемы Венеры, продолжающей, несмотря на огромные успехи, достигнутые за последние годы, в ее изучении, по праву сохранять за собой название планеты загадок.

 

12.5.2 Марс

Самая исследуемая сейчас планеты, на которой ведутся поиски, - Марс, но не все ученые соглашаются с тем, что на ней могут существовать какие - то формы жизни, некоторые считают Марс необитаемым. С учетом этого остановимся на этой планете подробней. Аргументы против жизни на Марсе убедительны и хорошо известны, приведем некоторые.

Температура

Средняя температура почти -55°С (на Земле + 15°С) температура всей планеты может упасть до рассвета до -80°С. В середине марсианского лета близ экватора температура составила +30°С, но, возможно, в некоторых областях поверхность никогда не нагревается до 0°С.

Атмосфера

Как показали полеты "Маринеров", общее давление лежит в области 3 - 7 мб (на Земле 1000 мб) . При этом давлении вода будет быстро испаряться при низких температурах. Атмосфера содержит небольшое количество азота и аргона, но главная масса - углекислота, что должно благоприятствовать фотосинтезу; но еще меньше в марсианской атмосфере кислорода. Правда, многие растения могут жить и без него, но для большинства земных организмов он необходим.

Вода

Наблюдая полярные шапки, астрономы сделали вывод, что они состоят из воды. Считалось, что они могут состоять из твердой углекислоты (сухого льда). В атмосфере не раз наблюдались облака различных типов, по - видимому, состоящих из ледяных кристаллов (вообще образование облаков на Марсе – редкость). Спектроскопически недавно была обнаружена вода, но влажность там должна быть очень низкой. Это может указывать на смачивание почвы влагой атмосферы, хотя такое явление бывает очень редко. Не видно движения жидкой воды по планете, хотя перемещение воды от полюса к полюсу действительно происходит (по мере таяния южной полярной шапки северная нарастает).

Ультрафиолетовое излучение

Практически все ультрафиолетовое излучение Солнца проникает сквозь разреженную атмосферу до поверхности планеты, что пагубно влияет на все живое (на земное, по крайней мере). Уровень космического излучения выше, чем на Земле, но по большинству расчетов он не опасен для жизни.

Тем не менее климат Марса, атмосфера отдаленно аналогичны земным. Эта планета свободна от заражения веществами земного происхождения. Поэтому обнаружение жизни на ней наиболее вероятно.

Не смотря на все эти доводы, ряд наблюдений говорит в пользу жизни на Марсе столь убедительно, что нельзя не упомянуть о них. Приведем некоторые из них.

Участки марсианской поверхности, которые ученые называют морями, обнаруживают все признаки жизни: во время марсианской зимы они тускнеют или почти исчезают, а с наступлением весны полярные шапки начинают отступать, и тогда "моря" немедленно начинают темнеть; это потемнение продвигается к экватору, тогда как полярная шапка отступает к полюсу. Трудно придумать этому явлению другое объяснение, кроме того, что потемнение вызывается влагой, возникшей при таянии полярной шапки.

Постепенное продвижение потемнения от края полярной шапки к экватору совершается с постоянной скоростью, одинаковой из года в год. В среднем фронт потемнения движется к экватору со скоростью 35 км / сутки.. Все это выглядит аномалией, если считать, что потемнение почвы обусловлено переносом влаги из полярных шапок атмосферными течениями. Во всяком случае, физические теории, выдвигавшиеся до сих пор для объяснения этого явления, были отвергнуты.








Дата добавления: 2017-09-19; просмотров: 171;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.032 сек.