Сложение взаимно перпендикулярных колебаний.
Рисунок 2.3
Складываемые колебания имеют вид:
.
Частоты колебаний определяются как , , где , -коэффициенты жесткости пружин.
2. Рассмотрим случай сложения двух взаимно перпендикулярных колебаний с одинаковыми частотами , что соответствует условию (одинаковые пружины). Тогда уравнения складываемых колебаний примут вид:
Когда точка участвует одновременно в двух движениях, ее траектория может быть различной и достаточно сложной. Уравнение траектории результирующего колебаний на плоскости ОХУ при сложении двух взаимно перпендикулярных с равными частотами можно определить, исключив из исходных уравнений для х и y время t:
.
Вид траектории определяется разностью начальных фаз складываемых колебаний, которые зависят от начальных условий (см. § 1.1.2). Рассмотрим возможные варианты.
а) Если , где n = 0, 1, 2…, т.е. складываемые колебания синфазные, то уравнение траектории примет вид:
(Рисунок 2.3 а).
Рисунок 2.3.а | Рисунок 2.3 б |
б) Если (n = 0, 1, 2 …), т.е. складываемые колебаний находятся в противофазе, то уравнение траектории записывается так:
(Рисунок 2.3б).
В обоих случаях ( а, б) результирующее движение точки будет колебание по прямой, проходящей через точку О. Частота результирующего колебания равна частоте складываемых колебаний ω0, амплитуда определяется соотношением:
.
Угол, который прямая (траектория) составляет с осью ОХ, можно найти из уравнения:
(знак "плюс" – случай а, знак "минус" – случай б).
Результатом сложения взаимно перпендикулярных колебаний (случай а и б) является колебание, которое называется линейно поляризованным.
в) Если (n = 0, 1, 2 …), то уравнение траектории результирующего движения примет вид:
.
Это уравнение эллипса, его оси совпадают с осями координат ОХ и ОУ, а размеры его полуосей равны и (Рисунок 2.4 ).
Рисунок 2.4
Точка в результате участия в двух взаимно перпендикулярных колебаниях описывает эллипс за время, равное периоду складываемых колебаний .
3. Сложение взаимно перпендикулярных колебаний с кратными частотами.
Складываются взаимно перпендикулярные колебания, частоты которых не равны , но , , где a и b – целые числа.
Периоды колебаний вдоль осей ОХ и ОУ соответственно равны и . Отношение периодов .
Траектория точки, участвующей во взаимно перпендикулярных колебаниях с кратными частотами, - замкнутая кривая, форма которой зависит от соотношения амплитуд, частот и начальных фаз складываемых колебаний. Такие замкнутые траектории называются фигурами Лиссажу
27. Свободные колебания. Коэффициент затухания, декремент затухания, добротность колебательной системы
Свободные (или собственные) — это колебания в системе под действием внутренних сил, после того как система выведена из состояния равновесия (в реальных условиях свободные колебания всегда затухающие). Простейшими примерами свободных колебаний являются колебания груза, прикреплённого к пружине, или груза, подвешенного на нити.
Затухающие колебания — колебания, энергия которых уменьшается с течением времени. Бесконечно длящийся процесс видав природе невозможен. Свободные колебания любого осциллятора рано или поздно затухают и прекращаются. Поэтому на практике обычно имеют дело с затухающими колебаниями. Они характеризуются тем, что амплитуда колебанийAявляется убывающей функцией. Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебанийили её квадрата.
В акустике: затухание — уменьшение уровня сигнала до полной неслышимости.
ДЕКРЕМЕНТ ЗАТУХАНИЯ (от лат. decrementum - уменьшение, убыль) (логарифмический декремент затухания) - количественная характеристика быстроты затухания колебаний в линейной системе; представляет собой натуральный логарифм отношения двух последующих максимальных отклонений колеблющейся величины в одну и ту же сторону. T. к. в линейной системе колеблющаяся величина изменяется по закону(где постоянная величина- коэф. затухания) и два последующих наиб. отклонения в одну сторону X1и X2(условно наз. "амплитудами" колебаний) разделены промежутком времени(условно наз. "периодом" колебаний), то, а Д. з..
Добро́тность — характеристикаколебательной системы, определяющая полосурезонансаи показывающая, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний.
Добротность обратно пропорциональна скорости затухания собственных колебаний в системе. То есть, чем выше добротность колебательной системы, тем меньше потери энергии за каждый период и тем медленнее затухают колебания.
Общая формула для добротности любой колебательной системы:
,
где:
§ — резонансная частота колебаний
§ — энергия, запасённая в колебательной системе
§ — рассеиваемая мощность.
28. Вынужденные колебания. Резонанс
Вынужденные колебания —колебания, происходящие под воздействием внешних сил, меняющихся во времени.
Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частотаопределяются внутренними свойствами самой автоколебательной системы.
рассмотрения гармонического осциллятора и вынуждающей силы, которая изменяется по
закону: .
[править]Вынужденные колебаниягармонического осциллятора
[править]Консервативныйгармонический осциллятор
Второй закон Ньютона для такого осциллятора запишется в виде: . Если ввести обозначения: и заменить ускорение на вторую производную от координаты по времени, то получим следующее обыкновенное дифференциальное уравнение:
Решением этого уравнения будет сумма общего решения однородного уравнения и частного решения неоднородного. Общее решение однородного уравнения было уже получено здесь и оно имеет вид:
,
где — произвольные постоянные, которые определяются из начальных условий.
Найдём частное решение. Для этого подставим в уравнение решение вида: и получим значение для константы:
Дата добавления: 2017-05-18; просмотров: 922;