Коэффициенты прямолинейной парной корреляции
Если взаимосвязь между изучаемой парой признаков выражается в форме, близкой к прямолинейной, то степень тесноты связи между этими признаками можно рассчитать при помощи коэффициента прямолинейной парной корреляции. В настоящее время имеется много различных способов расчета коэффициента парной корреляции. Каждый способ учитывает характер и особенности взаимосвязей между изучаемыми признаками в статистической совокупности. Доказано, что наиболее точный результат корреляционной тесноты связи между факторным и результативным признаками может быть получен по формуле
, (11.2)
где r ху – коэффициент парной корреляции между признаком-фактором (х) и признаком-результатом (у); tx – нормированное отклонение по признаку-фактору; t y – нормированное отклонение по признаку-результату.
Коэффициенты корреляции, также как и корреляционные отношения, обладают стабильным свойством, заключающимся в том, что пределы колебаний этих показателей могут быть выражены следующим образом: -1< r ху < 1. Это означает, что коэффициенты корреляции и корреляционные отношения могут колебаться в пределах, не превышающих единицу.
Сокращенный вариант расчета коэффициента парной корреляции между урожайностью сена многолетних трав и годовым удоем коров в 100 сельскохозяйственных организациях по формуле 11.3 приведен в табл. 11.1.
Т а б л и ц а 11. 1. Расчет вспомогательных показателей для определения коэффициента парной корреляции
№ п.п. | х, ц/га | , ц/га | , ц/га | у, ц | , ц | , ц | |||
-10 | -1,0 | -15 | -1,5 | 1,5 | |||||
-9 | -0,9 | -15 | -1,5 | 1,4 | |||||
-8 | -0,8 | -1,0 | 0,8 | ||||||
... | … | .. | … | … | … | … | … | … | … |
2,0 | 1,5 | 3,0 | |||||||
Σ | - | - | - | - | 70,0 | ||||
Среднее | - | - | - | - | 0,7 |
Как видно, полученное среднее произведение нормированных отклонений по признаку-фактору и признаку-результату представляет собой коэффициент парной корреляции между этими признаками. Поскольку этот коэффициент положительный, то взаимосвязь между признаками прямая, а величина коэффициента корреляции (r = 0,7) указывает на среднюю меру зависимости годового удоя одной коровы от урожайности сена многолетних трав.
Необходимо иметь в виду, что абсолютная величина коэффициента корреляции, как и корреляционного отношения, может колебаться от 0 до 1, а с учетом направления связи – находиться в пределах от – 1 до 1. При этом чем ближе коэффициент корреляции к единице (отрицательной или положительной), тем теснее находятся признаки во взаимосвязи.
Расчет коэффициента корреляции по основной формуле 11.2 хотя и дает довольно точный результат, но отличается повышенной трудоемкостью вычисления. Поэтому для измерения степени тесноты связи между факторным и результативным признаками можно рекомендовать формулу, предложенную К. Пирсоном:
, (11.3)
где r xy – коэффициент прямолинейной парной корреляции; – среднее произведение факторного и результативного признаков: – среднее значение соответственного факторного и результативного признаков, –– средние квадратические отклонения признака-фактора и признака-результата.
При расчете коэффициента прямолинейной парной корреляции по формуле 11.3 в общем виде можно воспользоваться макетом вспомогательной табл. 11.2.
Т а б л и ц а 11.2. Схема расчета вспомогательных показателей
Дата добавления: 2017-04-20; просмотров: 407;