Скорость и ускорение точки

Одной из основных характеристик движения точки является ее скорость относительно выбранной системы отсчета, которая изображена в виде декартовой прямоугольной системы координат (рис. 21).

Положение движущейся точки относительно рассматриваемой системы отсчета определяется в момент времени радиусом-вектором , который соединяет неподвижную точку с этой точкой. В другой момент времени движущаяся точка займет положение и ее радиусом-вектором будет . За время радиус-вектор движущейся точки изменится на .

Средней скоростью точки за время называют отношение , т.е.:

.

Средняя скорость параллельна вектору . В общем случае она зависит от времени осреднения . У нее нет конкретной точки приложения на траектории.

Введем скорость точки в момент , которая определяется как предел средней скорости, если промежуток времени, за который определяется средняя скорость, стремится к нулю, т. е.

.

Скорость точки направлена в сторону ее движения по предельному направлению вектора при , стремящемся к нулю, т.е. по предельному направлению секущей , которая совпадает с касательной к траектории в точке . Таким образом, скорость точки равна первой производной по времени от ее радиуса-вектора. Она направлена по касательной к траектории в сторону движения точки.

Начало радиуса-вектора движущейся точки можно выбрать в любой неподвижной точке. На рис. 21 представлен случай, в котором радиусом-вектором является также с началом в точке . Радиусы-векторы имеют одинаковые изменения и за время и поэтому

. (44)

Пусть движущаяся точка в момент времени имеет скорость . В момент времени эта точка занимает положение , имея скорость (рис. 22). Чтобы изобразить приращение скорости за время , перенесем вектор скорости параллельно самому себе в точку .

Средним ускорением точки за время называют отношение , т.е. . Среднее ускорение точки параллельно приращению скорости . Как и средняя скорость, среднее ускорение не имеет на траектории конкретной течки приложения и изображено в точке условно. В общем случае среднее ускорение зависит от времени .

Ускорением точки в момент времени называют предел, к которому стремится среднее ускорение при , стремящемся к нулю, т. е.

. (45)

Таким образом, ускорение точки равно первой производной по времени от скорости точки.

Приращение скорости и, следовательно, среднее ускорение направлены внутрь вогнутости траектории. Так же направлены и их предельные значения при , стремящемся к нулю. Поэтому ускорение точки направлено тоже внутрь вогнутости траектории.

Ускорение точки можно представить в виде (рис. 23):

. (46)

Часть ускорения, равная

,

называется касательной составляющей ускорения. Она направлена по касательной к траектории. Другая часть ускорения

называется нормальной составляющей ускорения ( – радиус кривизны траектории). Она направлена внутрь вогнутости траектории, перпендикулярно .

2.1.2. Векторный способ задания движения точки

Движение точки относительно рассматриваемой системы отсчета при векторном способе изучения движения задается радиусом-вектором этой точки (рис. 24). Движение точки считается заданным, если известен радиус-вектор движущейся точки как функция времени, т. е.

. (47)

Задание векторного уравнения движения (47) полностью определяет движение точки.

Скорость точки направлена по касательной к траектории и вычисляется, согласно ее определению, по формуле:

. (48)

Для ускорения точки соответственно имеем

. (49)

Определение скорости и ускорения точки сводится к чисто математической задаче вычисления первой и второй производных по времени от радиуса-вектора этой точки.








Дата добавления: 2017-01-29; просмотров: 562;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.