Оптимизация многокомпонентного состава питательной среды
Несмотря на наличие большого количества работ, посвященных вопросам питания микроорганизмов, не всегда с достоверной точностью удается определить количественные и качественные характеристики необходимых для развития и метаболизма клеток питательных веществ. Поэтому при конструировании новых ПС необходимо проведение широких исследований по выбору ПС и оптимизации качественных и количественных компонентов среды с целью получения наиболее желаемого результата при ее использовании.
Культивирование микроорганизмов неразрывно связано с целесообразностью выявления оптимальных условий ведения процесса. При этом приходится иметь дело с задачами определения оптимальных параметров процесса в зависимости от выбранного критерия оптимизации. Их решение связано с необходимостью максимизации продуктивности процесса по бактериальной массе и минимизации затрат.
Процессы культивирования микроорганизмов можно оптимизировать методами, которые разделяются на две группы.
К первой группе относятся методы оптимизации по экспериментальным данным. Они не требуют привлечения сложных математических расчетов, но связаны со значительными затратами времени, возникающими из-за необходимости проведения большого количества экспериментальных исследований.
Ко второй группе относятся методы с применением математических моделей.
В свою очередь последние подразделяются на две отличающиеся по сложности исполнения и точности описания реального процесса подгруппы.
К первой следует отнести методы, основанные на построении математической зависимости (уравнения регрессии) протекания ограниченных процессов с использованием традиционного метода планирования эксперимента Бокса-Уилсона. Он позволяет строить поисковые модели, когда исследователь, не располагая сведениями о механизме соблюдаемого явления, имеет лишь информацию о реакции системы на возмущение.
Ко второй подгруппе относятся методы, основанные на построении моделей, базисом которых являются законы, описывающие протекание фундаментальных процессов микробиологии (например, процесс размножения и отмирания микроорганизмов). В этом случае принимается за основу положение, что комплекс всех изменений, происходящих в культуральной жидкости (изменение содержания компонентов ПС, образование и расходование промежуточных продуктов биосинтеза, выделение метаболитов и катаболитов, трансформация органических соединений) - это следствие процессов самовоспроизведения, а также результат реакций, связанных с адаптацией и саморегуляцией микробной популяции.
Оптимизация процессов микробиологического синтеза, основанная на использовании методов второй подгруппы, является наиболее глубокой и точной, хотя и более трудоемка и длинна, т.к. требует основательного изучения законов протекания элементарного акта на лабораторном уровне с целью последующего создания математической модели в форме кинетических уравнений. На основе этой модели идет дальнейшая балансировка состава ПС, а также поиск оптимума основных режимов ведения процесса.
Задача оптимизации управляемого периодического процесса культивирования по максимизации бактериальной массы или целевого продукта в общем виде выглядит следующим образом: определяется наиболее рациональный состав исходной ПС, а затем профили изменения основных технологических параметров, обеспечивающих значение выбранного критерия эффективности при заданных ограничениях.
Важнейшим элементом оптимизации технологического процесса является выбор критерия эффективности. В качестве критериев используют такие показатели, как концентрация живых микробных клеток, съем целевого продукта с единицы объема среды и т.д. Обычно оптимизация процесса культивирования начинается с выбора ПС, обеспечивающей питательные потребности популяции микробов или синтез максимального количества продуктов метаболизма. Количество компонентов, входящих в ПС для выращивания микроорганизмов, может превышать десяток элементов. Биологической роли каждого элемента, влияющего в целом ряде случаев в микродозах на активность метаболических превращений в клетке, посвящено большое число исследований.
Сложность выбора определяется еще и тем, что на рост микроорганизмов влияет также взаимное соотношение компонентов.
Большое количество и взаимосвязь составляющих ПС ингредиентов обуславливает выбор методов экспериментального исследования. Обычно используемые методы однофакторного планирования в этих условиях малоэффективны. Использование же математических методов многофакторного планирования экспериментов позволяет установить необходимые концентрации компонентов питания с учетом их совместного влияния на скорость роста, качество биомассы и количество целевого продукта.
Обычную схему оптимизации ПС можно представить следующими этапами (схема.1).
Сбор предварительных данных о ПО и составе ПС | ||
Выбор критерия оптимизации | ||
Постановка эксперимента по матрице планирования | ||
Получение обобщающей зависимости (модели) | ||
Проверка адекватности модели и значимости коэффициентов | ||
Оптимизация модели | ||
Экспериментальная проверка расчетных концентраций компонентов среды | ||
Получение прописи оптимальной ПС | ||
Дата добавления: 2016-05-11; просмотров: 1074;