Строение клеточных стенок
Технологические свойства растительного сырья определяются, в основном составом и количественным содержанием углеводов клеточных стенок, их функциональным состоянием и особенностью строения.
Клеточные стенки – сложный и многослойный комплекс, состоящий из многих полимеров, в образовании которого основная роль принадлежит аппарату Гольджи клетки.
Срединная пластинка состоит, в основном, из гемицеллюлоз и пектиновых веществ. Пол обе стороны от срединной пластинки две дочерние клетки образуют так называемую первичную оболочку, где между молекулами гемицеллюлоз и пектиновых веществ встроены фибриллы целлюлозы. Дальше она становится толще за счет наслоения дополнительных слоев биополимеров, которые образуют вторичную оболочку. Отличить первичную оболочку от вторичной очень трудно, но в последней содержится больше целлюлозы. Насквозь все структуры пронизывает изотропное межклеточное вещество матрикс и лигнин.
Гемицеллюлоза(полуклетчатка) – большая группа веществ, которые по характеру строения принадлежат к полисахаридам, по структурному значению определяют строение клетки растительной ткани, в технологическом аспекте определяет такие
Рис 6.3. Структура первичной клеточной стенки
1- микрофибрилла целлюлозы, 2- ксилоглюкан; 3 – главные
рамногалактуроновые цепи пектиновых веществ; 4 – боковые галактановые цепи пектиновых веществ; 5 – структурный белок с арабинозными тетрасахаридами; 6 6 - арабиногалактан
параметры как продолжительность технологической обработки, температура, способ обработки, параметры варочной среды (присутствие солей, рН среды), порядок закладки овощей.
Гемицеллюлоза – сложный по строению высокомолекулярный полисахарид, не растворимый в холодной воде, растворим в 10%-м растворе NaОН и легко гидролизуется под влиянием слабых растворов кислот.
По характеру мономеров различают гомогемицеллюлозу (ксилан, арабан, манан, галактан, которые при мягком гидролизе дают смесь мономеров) и гетерогемицеллюлозу - галактоарабан, арабаноксилан и т.д., т.е. вещества которые в процессе гидролиза дают смесь пентоз и гексоз. Гемицеллюлозы являются спутниками клетчатки, принадлежат к структурным углеводам клеточных стенок. Их содержание в овощах и плодах 0,1…0,7%. Благодаря значительному количеству гидроксильных групп гемицеллюлоза гидрофильна, удерживает воду в плодах и овощах, способна к гидратации (набухание высушенных овощей и фруктов). Гемицеллюлоза не переваривается в желудке, способна к набуханию в кишечнике.
Клетчатка (целлюлоза) – один из основных полисахаридов клеточной стенки, содержание которой составляет 0,3…3,0%. Повышенное содержание клетчатки в пастернаке (2,4%), хрене (2,8%), укропе (3,5%). Но ее содержание зависит от степени зрелости экземпляров. Среди ягод большим содержанием клетчатки отличается малина (5,1%), облепиха (4,7%).
Технологическая стойкость клетчатки, ее инертность в химическом плане, стойкость к действию ферментов обусловлена особенностями строения. Это линейный полисахарид (С6 Н10О5)n, построенный из остатков β-глюкозы, степень полимеризации – 300…12000 остатков. Целлюлоза характеризуется большой механической прочностью, что обуславливает изменение консистенции продукта при ее увеличении. Не растворима в воде, способна к гидролизу в жестких кислых условиях при кипячении с образованием глюкозы, что используется при получении гидролизного спирта.
Линейные полисахариды целлюлозы в растительной ткани скомпонованы в пучки, которые называются мицеллами.Мицеллы определенным образом ориентированы и погружены в непрерывную аморфную массу – матрикс,который состоит из гемицеллюлоз, пектиновых веществ и лигнина.
Будучи многоатомным соединением, клетчатка способна образовывать простые и сложные эфиры. Наибольшей значимостью для пищевой промышленности обладает способность целлюлозы образовывать метиловые эфиры.
Метилцеллюлоза (МЦ) характеризуется структурной, физиологической функцией, а так же способностью регулировать сенсорные чувства. Важным показателем МЦ является ее способность образовывать растворы заданной вязкости, изменение которой возможно в широких пределах введением таких корригирующих добавок как соль, сахар, спирт, крахмал. МЦ может образовывать и стабилизировать пены, эмульсии, суспензии, регулировать реологические, осмотические свойства пищевых систем. Физиологическая функция МЦ определяется ее принадлежностью к пищевым волокнам.
Технологическое значение имеет и натриевая соль карбоксиметилцеллюлозы (NаКМЦ), которая используется как загуститель, защитный коллоид и эмульгатор для прямых эмульсий «масло-вода».
Пектиновые вещества – являются очень важным компонентом клеточных стенок растительной ткани. Их содержание может колебаться в широких пределах. Понятие пектиновые вещества объединяет несколько самостоятельных веществ, растворимых и нерастворимых в воде.
Химический состав и содержание пектиновых веществ неодинаков в различных растениях, зависит от метеорологических условий, географической зоны, сортовой принадлежности, периода развития и возраста растения. Так, в яблоках и айве их содержится до 2%, грушах – 0,8%, косточковых культурах – от 0,5 до 2,3% Богаты пектином абрикосы, смородина, из овощей – морковь и перец, много их в кожице яблок.
Под термином “пектиновые вещества” объединяют пектиновые и пектовые кислоты, протопектин и пектин. В основе структуры пектиновых веществ, пектина и протопектина лежит пектиновая кислота.
Под пектинами, которые входят в состав клеточных стенок, подразумевают полимеры пектиновых кислот, карбоксильные группы которых в разной степени метоксилированы и нейтрализованы.
Рис. 6.4. Структура пектиновой молекулы (по Альберсхейму)
Протопектины - характеризуются нерастворимостью в воде и способны при гидролизе образовывать пектиновые кислоты. Протопектин имеет сложную разветвленную структуру.
Пектины – сложные биополимерные соединения, в которые наряду с галактуронами входят и нейтральные составные – арабинаны, галактаны, арабиногалактин. Пектин обладает желирующими свойствами, которые проявляются тем сильнее, чем больше в его молекуле метоксильных групп.
Таким образом, пектиновые вещества составляют, с одной стороны, часть пищевых волокон, с другой, определяют товароведные (лежкость) и технологические свойства растительной ткани. Пектиновые вещества, в том числе протопектин, характеризуются относительной стабильностью в процессе хранения. Их количественный состав, содержание, соотношение и взаимные превращения определяют индивидуальную консистенцию плодов и ягод. Так, в процессе хранения плоды и овощи способны дозревать, т.е. становиться более мягкими.
С точки зрения технологии состояние пектиновых веществ определяет многие технологические параметры и влияют на качественные показатели готового продукта.
В технологиях, связанных с термообработкой, в связи с особенностями состава, строения, содержания протопектина определяются как порядок внесения пищевых продуктов, так и условия их термообработки. Из вопроса строения растительной ткани определено, что основная часть пектиновых веществ размещена в срединных пластинках, тогда как стойкая к термообработке целлюлоза и гемицеллюлоза размещена по структуре достаточно равномерно. Поэтому трансформация протопектина в более или менее растворимый пектин снижает прочность клеточных структур в растительной ткани, что, наконец, при достижении определенных значений определяет понятие «консистенция» готового продукта. В общем, плане распад растительной ткани на отдельные клетки носит название мацерация.
Роль полимеров клеточных стенок в формировании органолептических показателей кулинарной продукции
При механической кулинарной обработке картофеля, овощей и плодов (очистка, нарезка, промывание и др.) частично нарушается целостность их паренхимной ткани, а часть клеточных структур разрушается. Это облегчает переход основных пищевых веществ из разрушенных клеток в окружающую среду, а так же смешиванию содержимого органелл. В результате масса и пищевая ценность продукта изменяются, возникают ферментативные, окислительные и другие процессы, вызывающие изменение органолептических показателей продукта.
В начальный период тепловой кулинарной обработки в овощах и плодах могут активизироваться все содержащиеся в них ферменты, вызывающие те или иные изменения пищевых веществ на определенном этапе тепловой обработки ферменты инактивируются, цитоплазма и клеточные мембраны разрушаются вследствие денатурации белков, отдельные компоненты структурных компонентов получают возможность взаимодействовать друг с другом и окружающей средой.
Изменение углеводов. В процессе тепловой обработки в плодах и овощах, как и в продуктах животного происхождения, происходит целая цепь физико-химических изменений, которые приводят к кулинарной готовности продукта. Одним из таких изменений является размягчение продукта. В результате тепловой обработки продукты легче раскусываются, разрезаются, протираются. Микроскопические исследования показывают, что в вареных продуктах клетки сохраняют целостность даже при длительном нагревании, когда сама ткань распадается. Клеточные оболочки остаются целыми при протирании вареных продуктов в горячем состоянии, поэтому мы не ощущаем вкус крахмального клейстера в картофельном пюре, приготовленном правильно по технологии. При остывании вареных продуктов эластичность оболочки клетки теряется, они становятся более хрупкими и в процессе протирании легко разрушаются (протирание охлажденного картофеля). Но главное – это ослабление связи между клетками за счет разрушения срединных пластинок. Какие именно изменения компонентов приводят к этому?
Известно, что срединная пластинка приблизительно на 90% состоит из протопектина, он же входит и в состав клеточных стенок.
Установлено, что в процессе тепловой обработки происходит расщепление молекулы протопектина и его превращение в растворимый пектин.
Таблица 6.2. Содержание протопектина в некоторых овощах до и после варки
Овощи | Протопектин, % галактуроновой кислоты на сырую массу | Стпень изменения, % | |
До варки | После варки | ||
Свекла | 0,49 | 0,21 | 57,3 |
Морковь | 0,53 | 0,32 | 40,2 |
Репа | 1,08 | 0,71 | 34,4 |
Петрушка | 0,75 | 0,58 | 23,0 |
Капуста белокочанная | 0,48 | 0,36 | 25,0 |
Реакции, приводящие к таким изменениям, разнообразны. Прежде всего, разрушается связь между отдельными пектиновыми цепями, то есть:
Ø распадаются водородные связи между этерифицированными остатками галактуроновой кислоты;
Ø разрушаются солевые мостики.
Но в процессе хранения фруктов в период их дозревания происходит расщепление протопектина без действия тепла. В этом случае процесс идет под действием фермента протопектиназы.
В разных продуктах в зависимости от особенностей строения протопектина доминирующую роль играет тот или иной механизм его расщепления. Степень и скорость размягчения продуктов зависит не только от характера реакций, а и от растворимости веществ, которые образуются.
Деструкция протопектина начинается при 60 0С, с повышением температуры процесс интенсифицируется.
Разрыхлению клеточных оболочек могут способствовать процессы набухания и частичного гидролиза клетчатки и гемицеллюлозы.
Деструкция гемицеллюлоз. При тепловой кулинарной обработке овощей наряду и параллельно с деструкцией протопектина происходит деструкция гемицеллюлоз с образованием растворимых веществ. Гемицеллюлозы при тепловой обработке частично набухают, подвергаются гидролизу, что подтверждается накапливанием в отварах и готовых продуктах нейтральных сахаров – арабинозы, галактозы и др.
Исследования показывают, что степень деструкции гемицеллюлоз несколько уступает степени деструкции протопектина, однако она достаточно высокая и, по-видимому, оказывает заметное влияние на деструкцию клеточных стенок, содержащих значительное количество гемицеллюлоз.
Деструкция гемицеллюлоз начинается при более высоких температурах, чем деструкция протопектина (70…80оС). При более высоких температурах процесс ускоряется. При понижении температуры гемицеллюлозы регенерируют и отдают часть воды, поглощенной при набухании и деструкции.
Деструкция экстенсина. Структурный белок клеточных стенок в процессе тепловой обработки подвергается деструкции с образованием растворимых продуктов. Деструкция экстенсина начинается при более низких температурах, чем протопектина и гемицеллюлоз. Так, при нагревании нарезанных корнеплодов в воде при температуре 50оС в течение 1 часа отмечается заметное снижение количества оксипролина. Механическая прочность при этом снижается, а содержание протопектина практически не изменяется.
Интересно такое явление: если свеклу на протяжении часа варить, а потом положить в холодную воду, она так же размягчается. Это связано с тем, что при остывании корнеплодов набухшая целлюлоза и гемицеллюлоза частично восстанавливают структуру и выделяют поглощенную при набухании воду, в которой и растворяются продукты деструкции протопектина. Это может произойти только в том случае, когда температура внутри корнеплода была близка к 100 0С, т.е. когда углеводы клеточных стенок и экстенсин уже подверглись определенной деструкции и для ее завершения и растворения продуктов деструкции необходимо дополнительное количество влаги. Эта влага поступает либо из клетки при дальнейшей варке свеклы, либо из набухших углеводов в результате их регенерации.
Описанный механизм деструкции компонентов клеточных стенок овощей при тепловой кулинарной обработке позволяет объяснить причины образования клейкого и тягучего картофельного пюре при протирании остывшего картофеля. В сваренном горячем картофеле оболочки клеток паренхимной ткани обладают достаточной прочностью и эластичностью и не разрушаются при приготовлении пюре. Ткань разрушается по резко ослабленным срединным пластинкам и готовое пюре имеет сухую рассыпчатую консистенцию.
При охлаждении вареного картофеля в результате уменьшения набухания клетчатки и гемицеллюлоз и растворимости продуктов деструкции гемицеллюлоз происходит определенное упорядочение элементов их нарушенной структуры, в результате эластичность клеточных стенок снижается, а жесткость (хрупкость) возрастает. Кроме того амилоза, перешедшая в срединные пластинки, ретроградирует, связь между клетками усиливается, жесткость студня внутри клейстеризованного крахмального зерна возрастает. И при механическом воздействии на клетки остывшего картофеля происходит разрушение клеток и зерен клейстеризованного крахмала и вытекающий из них клейстер придает структуре пюре нежелательную клейкость.
Дата добавления: 2016-12-26; просмотров: 1479;