Регулирование скорости асинхронного двигателя
В последние 10-25 лет установилась четкая тенденция на переход от привода постоянного тока к приводу переменного тока благодаря совершенствованию законов управления двигателями переменного тока и развитию силовой электроники.
Применение двигателей переменного тока обусловлено их простотой, дешевизной, повышенной надежностью, существенно меньшими габаритами и массой по сравнению с двигателями постоянного тока. К недостаткам регулирования скорости можно отнести высокую сложность теории машин переменного тока и алгоритмов управления, закладываемых в преобразовательные устройства.
Наибольшее распространение получили следующие способы регулирования угловой скорости асинхронного двигателя: 1) реостатное; 2) изменением напряжения на статоре; 3) переключением числа пар полюсов; 4) изменением частоты питающего напряжения и др.
5.4.1. Реостатное регулирование
Схема включения АД при этом способе регулирования представлена на рис. 5.9. Реостатные характеристики получаются путем введения в цепь ротора добавочного сопротивления. При этом с ростом сопротивления падает жесткость МХ.
Допустимый диапазон регулирования скорости при данном способе
.
Так как , то приближенно
,
где – относительная величина изменения скорости; – относительная величина изменения момента.
Из полученной формулы видно, что при равных относительных отклонениях угловой скорости и момента нагрузки диапазон регулирования . При более низком допустимом отклонении угловой скорости диапазон оказывается ещё меньше.
Рис. 5.9. Схема включения двигателя при реостатном способе регулирования |
Потери мощности при реостатном регулировании складываются из переменных потерь, включающих потери в меди статора и ротора и во внешних резисторах роторной цепи, и постоянных – не зависящих от нагрузки. Суммарные постоянные потери в двигателе остаются примерно одинаковыми независимо от нагрузки и скорости двигателя.
Электромагнитная и механическая мощности для АД
; ,
отсюда можно определить потери в роторе
.
Видно, что потери пропорциональны величине скольжения и распределяются пропорционально отношению сопротивлений ротора двигателя и добавочного сопротивления в цепи ротора, поэтому двигатель при реостатном регулировании может развивать момент, равный номинальному.
Недостатками реостатного регулирования скорости являются ступенчатое регулирование скорости и использование дополнительной аппаратуры, невысокое быстродействие и большие потери энергии при регулировании.
5.4.2. Регулирование угловой скорости АД изменением напряжения на статоре
При изменении величины первой гармоники изменяется величина критического момента при постоянстве критического скольжения (рис. 2.28). Такое изменение достигается использованием тиристорного преобразователя напряжения (ТПН).
Максимальный момент при уменьшении напряжения снижается пропорционально квадрату напряжения:
,
где – критический момент при сниженном напряжении; – пониженное напряжение.
Из рис. 5.11 видно, что пределы регулирования скорости весьма ограничены, даже при вентиляторной нагрузке.
Для расширения диапазона используют замкнутые по скорости САР, структурная схема которой представлена на рис. 5.10. В состав такой САР сходит датчик скорости (BR) и регулятор скорости, на который поступает разность между заданным и текущим значением скоростей. На выходе регулятора скорости вырабатывается сигнал, подающийся на вход системы импульсно-фазного управления, которая вырабатывает управляющие импульсы для ТПН. Особенность такого регулирования заключается в том, что все характеристики сходятся в точке синхронной скорости , поэтому, чем меньше скорость, тем выше скольжение и больше потери в двигателе. Механические характеристики двигателя при фазовом управлении в замкнутой САР скорости представлены на рис. 5.11.
Рис. 5.10. Структурная схема замкнутой САР скорости АД при фазовом управлении | Рис. 5.11. Механические характеристики САР скорости АД при фазовом управлении |
Двигатель при таком способе регулирования может работать продолжительное время при условии
.
Допустимый момент можно найти, приравнивая допустимые потери к номинальным
,
откуда
.
Кривая допустимого момента по нагреву представлена на рис.5.11.
Данный способ регулирования нельзя применять для механизмов, работающих в продолжительном режиме работе с постоянной нагрузкой. Эффективным оказывается использование фазового регулирования для механизмов, у которых статический момент зависит от скорости двигателя , например, для приводов вентиляторов, насосов, компрессоров. Этот способ также применим, когда двигатель работает на пониженных скоростях малое время относительно всего цикла работы, например, лифты. В этом случае завышение установленной мощности двигателя невелико.
Достоинством фазового управления является более низкая стоимость преобразователя (ТПН) в сравнении с преобразователем частоты (ПЧ) равной мощности, что позволяет для указанных механизмов обеспечить приемлемое качество технологического процесса без дополнительных затрат.
5.4.3. Изменение числа пар полюсов
Из выражения для угловой скорости АД:
,
видно, что регулирование скорости можно осуществлять изменением числа пар полюсов p обмотки статора двигателя. Так как данная величина может быть только целым числом, регулирование скорости оказывается ступенчатым.
Для данного вида регулирования изготавливаются многоскоростные АД с КЗР. В пазах сердечника статора размещают либо две независимые обмотки, либо одну полюснопереключаемую.
Различают две основные схемы переключения. Схема «звезда/двойная звезда» (рис. 5.12, I-II) обеспечивает регулирование с постоянством момента. Такую схему целесообразно применять в электроприводе с постоянно действующим моментом нагрузки при изменении частоты вращения. Схема «звезда/звезда» (рис.5.12, I-III) также даёт двукратное изменение числа пар полюсов, однако регулирование происходит при постоянстве мощности, то есть при переключении на повышенную скорость момент уменьшается в два раза. Такие схемы разумно применять в приводах, где момент сопротивления обратно пропорционален частоте вращения. Механические характеристики АД при регулировании скорости изменением числа пар плюсов представлены на рис. 5.13.
Рис. 5.12. Схемы соединения катушечных групп обмоток статора | Рис. 5.13. Механические характеристики АД при переключении числа пар полюсов |
Многоскоростные АД широко применялись в электроприводах, допускающих ступенчатое регулирование частоты вращения (привода лифтов, вентиляторов, станков). Достоинством такого способа является сохранение высоких экономических показателей при переходе с одной частоты вращения на другую, так как на всех ступенях переключения обмотки статора КПД и коэффициент мощности двигателя остаются практически неизменными. К недостаткам относят большую в сравнении с обычными АД сложность, завышенные габариты, большую стоимость. Кроме того, необходимость переключения обмоток статора на разное число пар полюсов требует усложнения коммутационной аппаратуры, что так же приводит к возрастанию цены электропривода в целом. В настоящее время этот способ вытесняется частотным регулированием.
5.4.4. Частотное регулирование скорости асинхронного двигателя
Частотный способ регулирования скорости АД является превалирующим и основным. Чем это обуславливается? В первую очередь в настоящее время развита теория машин переменного тока, что позволило найти оптимальные с некоторых позиций законы управления АД. Развитие промышленной электроники позволило в полной мере реализовать данные законы в «железе».
Существуют системы скалярного, векторного управления и системы прямого управления моментом. Выбор способа и принципа управления определяется совокупностью статических, динамических и энергетических требований к асинхронному электроприводу.
Принцип скалярного управления частотно-регулируемого асинхронного электропривода основан на изменении частоты и текущих значений модулей переменных АД (напряжений, магнитного потока, потокосцеплений и токов цепей двигателя). Этот принцип является наиболее распространённым в связи с тем, что ему свойственна техническая простота измерения и регулирования переменных АД, а так же возможность построения разомкнутых систем управления скоростью. Основной недостаток заключается в трудности реализации желаемых законов регулирования скорости и момента АД в динамических режимах.
Принцип векторного управления связан как с изменением частоты и текущих значений переменных АД, так и с взаимной ориентацией их векторов в полярной или декартовой системе координат. Благодаря контролю положения углов переменных такой способ обеспечивает полное управление АД как в статических, так и в динамических режимах, что даёт заметное улучшение качества переходных процессов по сравнению со скалярным управлением.
Системы прямого управления моментом являются продолжением и развитием систем векторного управления. Задачей прямого управления моментом является обеспечение быстрой реакции электромагнитного момента двигателя на управляющее воздействие. В отличие от векторного управления, где изменение момента производится путем воздействия на ток статора, в системе с прямым управлением моментом управляемой величиной является потокосцепление статора.
Преобразователи частоты, предназначенные для частотно-регулируемых АД, подразделяются по типу связи с питающей сетью на непосредственные ПЧ (НПЧ) и двухзвенные ПЧ (ДПЧ) с промежуточным звеном постоянного или переменного тока.
Момент АД пропорционален магнитному потоку и активной составляющей вторичного тока :
,
где – конструктивная постоянная АД; – угол сдвига между ЭДС и током ротора;
.
Из формулы для момента видно, что уменьшение магнитного потока, являющееся следствием увеличения частоты , приведет к возрастанию , а следовательно и потерь в роторе и одновременному уменьшению допустимого момента двигателя по условиям охлаждения двигателя. Уменьшение частоты при постоянстве амплитуды напряжения , как было показано в п. 4.3.3, также не допустимо по условиям насыщения магнитной системы машины. поэтому регулирование скорости двигателя изменением частоты питающего напряжения при условии постоянства момента двигателя приемлемо только при одновременном изменении амплитуды питающего напряжения, то есть выполнении закона , что обеспечивает практически постоянный магнитный поток в двигателе.
Для реализации указанного закона управления между сетью и двигателем включается преобразователь частоты (ПЧ), обеспечивающий одновременное изменение частоты и амплитуды напряжения на двигателе. При пониженных скоростях у самовентилируемых двигателей уменьшается отвод тепла в окружающую среду, поэтому в таких случаях необходимо снижать допустимый момент на двигателе.
При частотном регулировании по причинам, обусловленными механической прочностью подшипников и элементами ротора, поднимать частоту выше . Поэтому основной способ регулирования скорости заключается в уменьшении частоты напряжения.
Для построения примерного вида механических характеристик примем, что , тогда уравнение для критического момента можно переписать следующим образом:
.
Из формулы видно, что критический момент при выполнении закона остаётся постоянным. Условие пренебрежения активного сопротивления статора корректно при высоких скоростях двигателя, когда . При низких скоростях падение напряжения на активном сопротивлении статора становится сопоставимо с величиной напряжения на зажимах статора, что приводит к падению перегрузочной способности двигателя . Для того, чтобы реализовать одинаковую перегрузочную способность при частотном регулировании в области низких частот вращения используют так называемую «IR-компенсацию», которая заключается в том, что на малых скоростях делается добавка напряжения на статоре, компенсирующая .
Диапазон регулирования скорости в разомкнутых системах составляет . В замкнутых системах диапазон может быть существенно расширен.
Рис. 5.14. Схема включения АД при частотном регулировании | Рис. 5.15. Механические характеристики системы ПЧ-АД |
Основные сложности, возникающие при реализации частотного управления заключаются в следующем:
1) для получения в системах ПЧ-АД свойств аналогичных (или даже превосходящих) свойства систем ТП- ДПТ необходимо получение информации о различных параметрах АД;
2) системы являются сильно нелинейными и для получения высококачественных систем необходимо вводить звенья, компенсирующие нелинейность объекта регулирования;
3) закон не является оптимальным, и требуется корректировка закона, учитывающая на валу двигателя;
4) в АД входят параметры , величина которых зависит от степени насыщения машины нелинейно. Кроме этого изменяются значения активных сопротивлений статора и ротора при изменении температуры обмоток двигателя, что также необходимо учитывать.
Несмотря на указанные сложности, современные частотные приводы успешно функционируют, обеспечивая высокое качество процесса регулирования скорости.
Дата добавления: 2016-12-26; просмотров: 3176;