Виды радиоактивного распада
Ядра атомов устойчивы, но изменяют свое состояние при нарушении определенного соотношения протонов и нейтронов. В легких ядрах должно быть примерно поровну протонов и нейтронов. Если в ядре слишком много протонов или нейтронов, то такие ядра неустойчивы и претерпевают самопроизвольные радиоактивные превращения, в результате которых изменяется состав ядра и, следовательно, ядро атома одного элемента превращается в ядро атома другого элемента. При этом процессе испускаются ядерные излучения.
Существуют следующие основные типы ядерных превращений или виды радиоактивного распада: альфа-распад и бета-распад (электронный, позитронный и К-захват), внутренняя конверсия.
Альфа-распад –это испускание ядром радиоактивного изотопа альфа-частиц. Вследствие потери с альфа-частицей двух протонов и двух нейтронов распадающееся ядро превращается в другое ядро, в котором число протонов (заряд ядра) уменьшается на 2, а число частиц (массовое число) на 4. Следовательно, при данном радиоактивном распаде в соответствии с правилом смещения (сдвига), сформулированным Фаянсом и Содди (1913 г.), образующийся (дочерний) элемент смещен влево относительно исходного (материнского) на две клетки влево в периодической системе Д. И. Менделеева. Процесс альфа-распада в общем виде записывается так:
,
где X – символ исходного ядра; Y – символ ядра продукта распада; 42He – альфа-частица, Q – освобожденный избыток энергии.
Например, распад ядер радия-226 сопровождается испусканием альфа-частиц, при этом ядра радия-226 превращаются в ядра радон-222:
Энергия, выделяющаяся при альфе-распаде, делится между альфа-частицей и ядром обратно пропорционально их массам. Энергия альфа-частиц строго связана с периодом полураспада данного радионуклида(закон Гейгера-Неттола).Это говорит о том, что, зная энергию альфа-частиц, можно установить период полураспада, а по периоду полураспада идентифицировать радионуклид. Например, ядро полония-214 характеризуется значениями энергии альфа-частиц Е = 7,687 МэВ и Т1/2 = 4,5×10-4 с, тогда как для ядра урана-238 Е = 4,196 МэВ и Т1/2 = 4,5×109 лет. Кроме того, установлено, что чем больше энергия альфа-распада, тем быстрее он протекает.
Альфа-распад – достаточно распространенное ядерное превращения тяжелых ядер (уран, торий, полоний, плутоний, и др. с Z > 82); в настоящее время известно более 160 альфа-излучающих ядер.
Бета-распад –самопроизвольные превращения нейтрона в протон или протона в нейтрон внутри ядра, сопровождающиеся испусканием электроновили позитронов и антинейтрино или нейтрино nе.
Если в ядре имеется излишек нейтронов (“нейтронная перегрузка” ядра), то происходит электронный бета-распад, при котором один из нейтронов превращается в протон, испуская при этом электрон и антинейтрино:
.
При этом распаде заряд ядра и, соответственно, атомный номер дочернего ядра увеличивается на 1, а массовое число не изменяется, т. е. дочерний элемент сдвинут в периодической системе Д. И. Менделеева на одну клетку вправо от исходного. Процесс бета-распада в общем виде записывается так:
.
Таким способом распадаются ядра с избытком нейтронов. Например, распад ядер стронция-90 сопровождается испусканием электронов и превращением их в иттрий-90:
Часто ядра элементов, образующихся при бета-распаде, имеют избыточную энергию, которая высвобождается испусканием одного или нескольких гамма-квантов. Например:
Электронный бета-распад характерен для многих естественных и искусственно полученных радиоактивных элементов.
Если неблагоприятное соотношение нейтронов и протонов в ядре обусловлено излишком протонов, то происходит позитронный бета-распад, при котором ядро испускает позитрон и нейтрино в результате превращения протона в нейтрон внутри ядра:
Заряд ядра и, соответственно, атомный номер дочернего элемента уменьшается на 1, массовое число не изменяется. Дочерний элемент будет занимать место в периодической системе Д. И. Менделеева на одну клетку влево от материнского:
Позитронный распад наблюдается у некоторых искусственно полученных изотопов. Например, распад изотопа фосфора-30 с образованием кремния-30:
Позитрон, вылетев из ядра, срывает с оболочки атома “лишний” электрон (слабо связанный с ядром) или взаимодействует со свободным электроном, образуя пару “позитрон-электрон”. Вследствие того, что частица и античастица мгновенно взаимоуничтожаются с выделением энергии, то образованная пара превращается в два гамма-кванта с энергией, эквивалентной массе частиц (e+ и e-). Процесс превращения пары “позитрон-электрон” в два гамма-кванта носит название аннигиляции (уничтожения), а возникающее электромагнитное излучение называется аннигиляционным. В данном случае происходит превращение одной формы материи (частиц вещества) в другую (излучение). Это подтверждается существованием обратной реакции – реакции образования пары, при которой электромагнитное излучение достаточно высокой энергии, проходя вблизи ядра под действием сильного электрического поля атома, превращается в пару “электрон-позитрон”.
Таким образом, при позитронном бета-распаде в конечном результате за пределы материнского ядра вылетают не частицы, а два гамма-кванта, обладающие энергией в 0,511 МэВ каждый, равной энергетическому эквиваленту массы покоя частиц – позитрона и электрона E = 2mec2 = 1,022 МэВ.
Превращение ядра может быть осуществлено путем электронного захвата, когда один из протонов ядра самопроизвольно захватывает электрон с одной из внутренних оболочек атома (K, L и т. д.), чаще всего с К-оболочки, и превращается в нейтрон. Такой процесс называют также К-захватом. Протон превращается в нейтрон согласно следующей реакции:
При этом заряд ядра уменьшается на 1, а массовое число не изменяется:
Например,
При этом место, освобожденное электроном, занимает электрон с внешних оболочек атома. В результате перестройки электронных оболочек испускается квант рентгеновского излучения. Атом по-прежнему сохраняет электрическую нейтральность, т. к. количество протонов в ядре при электронном захвате уменьшается на единицу. Таким образом, этот тип распада приводит к тем же результатам, что и позитронный бета-распад. Характерен он, как правило, для искусственных радионуклидов.
Энергия, выделяемая ядром при бета-распаде конкретного радионуклида, всегда постоянна, но ввиду того, что при этом типе распада образуется не две, а три частицы: ядро отдачи (дочернее), электрон (или позитрон) и нейтрино, то энергия по-разному в каждом акте распада перераспределяется между электроном (позитроном) и нейтрино, т. к. дочернее ядро всегда уносит одну и ту же порцию энергии. В зависимости от угла разлета нейтрино может уносить большую или меньшую энергию, в результате чего электрон может получить любую энергию от нуля до некоторого максимального значения. Следовательно, при бета-распаде бета-частицы одного и того же радионуклида имеют различную энергию, от нуля до некоторого максимального значения, характерного для распада данного радионуклида. По энергии бета-излучения практически невозможно произвести идентификацию радионуклида.
Некоторые радионуклиды могут распадаться одновременно двумя или тремя способами: путем альфа- и бета-распадов и через К-захват, сочетанием трех типов распадов. В таком случае превращения осуществляются в строго определенном соотношении. Так, например, естественный долгоживущий радиоизотоп калий-40 (Т1/2=1,49×109 лет), содержание которого в природном калии составляет 0,0119 %, подвергается электронному бета- распаду и К-захвату:
(88 % – электронный распад),
(12 % – К- захват).
Из описанных выше типов распадов, можно сделать вывод, что гамма-распада в “чистом виде” не существует. Гамма-излучение только лишь может сопутствовать различным типам распадов. При испускании гамма-излучения в ядре не изменяются ни массовое число, ни его заряд. Следовательно, природа радионуклида не изменяется, а меняется лишь содержащаяся в ядре энергия. Гамма-излучение испускается при переходе ядер с возбужденных уровней на более низкие уровни, в том числе и на основной. Например, при распаде цезия-137 образуется возбужденное ядро бария-137. Переход из возбужденного в стабильное состояние сопровождается испусканием гамма-квантов:
Так как время жизни ядер в возбужденных состояниях очень мало (обычно t<10-19 с), то при альфа- и бета-распадах гамма-квант вылетает практически одновременно с заряженной частицей. Исходя из этого, процесс гамма-излучения не выделяют в самостоятельный вид распада. По энергии гамма-излучения, как и по энергии альфа-излучения, можно произвести идентификацию радионуклида.
Внутренняя конверсия.Возбужденное (в результате того или иного ядерного превращения) состояние ядра атома свидетельствует о наличии в нем избытка энергии. В состояние с меньшей энергией (нормальное состояние) возбужденное ядро может переходить не только путем излучения гамма-кванта или выброса какой-либо частицы, но и путем внутренней конверсии, или конверсии с образованием электрон-позитронных пар.
Явление внутренней конверсии состоит в том, что ядро передает энергию возбуждения одному из электронов внутренних слоев (К-, L- или М-слой), который в результате этого вырывается за пределы атома. Такие электроны получили название конверсионных электронов. Следовательно, испускание электронов конверсии обусловлено непосредственным электромагнитным взаимодействием ядра с электронами оболочки. Конверсионные электроны имеют линейчатый спектр энергии в отличии от электронов бета-распада, дающих сплошной спектр.
Если энергия возбуждения превосходит 1,022 МэВ, то переход ядра в нормальное состояние может сопровождаться излучением пары «электрон–позитрон» с последующей их аннигиляцией. После того как произошла внутренняя конверсия, в электронной оболочке атома появляется «вакантное» место вырванного электрона конверсии. Один из электронов более удаленных слоев (с более высоких энергетических уровней) осуществляет квантовый переход на «вакантное» место с испусканием характеристического рентгеновского излучения.
Дата добавления: 2016-08-08; просмотров: 3184;