Полуэмпирические методы расчета электронной структуры молекулярной системы сим-триазинов

 

Полуэмпирические методы расчета можно использовать для всех типов расчетов в меню Compute. Полуэмпирические методы решают уравнение Шредингера для атомов и молекул с использованием определенных приближений и упрощений. Все методы этой группы характеризуются тем, что: расчет ведется только для валентных электронов; пренебрегается значениями интегралов определенных взаимодействий; используются стандартные неоптимизированные базисные функции электронных орбиталей и используются некоторые параметры, полученные в эксперименте [54-57].

Экспериментальные параметры устраняют необходимость расчетов ряда величин и корректируют ошибочные результаты приближений. Необходимо помнить, что полуэмпирические методы в программе HyperChem могут обрабатывать не все элементы таблицы Менделеева, а только те, параметры которых внесены в файлы параметров.

Большинство полуэмпирических методов включает схему устранения вычислений, которые происходят со значительными затратами процессорного времени, в основном это расчет ряда интегралов перекрывания, а метод INDO (Intermediate Neglectingof Differential Overlap) не вычисляет и интегралы отталкивания, которые должны иметь небольшие величины.

HyperChem также позволяет рассчитывать электронную структуру только части системы, используя смешанные методы вычисления. Например, можно изучить электронную структуру активного центра системы с использованием полуэмпирических методов расчета, учитывая оставшуюся часть системы растворителя в рамках метода молекулярной механики. Для этого перед тем, как начинать расчет, выделите нужную часть системы с использованием инструментария меню Select, а затем введите соответствующие параметры меню Setup и Compute. Необходимо подчеркнуть, что такие расчеты возможно проводить только в том случае, если выделенная часть системы не соединена формальными химическими связями с остальной частью системы (построив модель, можно удалить соответствующие связи активного центра, электронную структуру которого необходимо исследовать, а затем выделить активный центр с использованием различных способов меню Select).

Например, выбрать параметр Molecules и выделить активный центр одним L-нажатием, либо выделить в нужной части один атом, а затем выбрать пункт Extendto sp3 в меню Select, при этом будет выделена вся молекулярная система, в которую входит выбранный атом. В этом случае программа HyperChem квантово-химически рассчитывает только выделенную часть атомов, а остальные рассматривает только как некий потенциал. В процессе оптимизации геометрии координаты невыделенной части атомов являются фиксированными и не изменяются в ходе проведения расчетов.

Расширенный метод Хюккеля (Extended Huckel) (РМХ) предназначен для вычислений молекулярных орбиталей и не позволяет оптимизировать геометрию и проводить молекулярно-динамические расчеты. В нем используется приближение невзаимодействующих электронов. В нем не используется приближение самосогласованного поля (SCF).

Метод CNDO (Complete Neglect of Differential Overlap) методом SCF. Он используется для расчетов основного состояния электронных характеристик систем с открытой и закрытой оболочками, оптимизации геометрии и полной энергии.

Метод INDO (Intermediate Neglectof Differential Overlap) , частичное пренебрежение дифференциальным перекрыванием) улучшает метод CNDO за счет учета расталкивания электронов на одном атомном центре. Позволяет проводить расчет основного состояния систем с открытой и закрытой оболочками, оптимизации геометрии и полной энергии. Это – SCF метод. Метод MINDO3 (Modified INDO, версии 3, улучшенный метод INDO) является дальнейшим развитием и расширением метода INDO. Для многих взаимодействий в нем используются эмпирические параметры вместо соответствующих вычислений. Этот метод позволяет получать хорошие результаты для больших углеродо-водородных систем при расчетах основного состояния систем с открытой и закрытой оболочками, оптимизации геометрии и полной энергии. Это метод самосогласованного поля SCF.

Метод MNDO является дальнейшим развитием метода MINDO3, в котором исправлен ряд ошибок последнего. Позволяет проводить качественные расчеты электронной и атомной структур органических систем, содержащих атомы 1-й и 2-й главных подгрупп (но не атомов переходных элементов). Этот метод позволяет получать хорошие результаты для больших систем при расчетах электронных характеристик и теплоты образования. Так же, как и MINDO3, это метод SCF.

Метод AM1 является улучшением метода MNDO. Один из наиболее точных методов. Используется для систем, содержащих элементы из главных подгрупп 1 и 2 групп периодической системы. Возможно, этот метод позволяет получать более качественные результаты, по сравнению с методом MNDO, для молекул, содержащих как азот, так и кислород. Вычисляет электронную структуру, оптимизирует геометрию, рассчитывает полную энергию и теплоты образования. Это метод SCF.

Метод PM3 является версией метода AM1 и отличается от AM1 только величинами параметров. Параметры для PM3 были получены сравнением большого числа и вида экспериментов с результатами расчетов. Как правило, нековалентные взаимодействия в методе PM3 являются менее расталкивающими, нежели чем в AM1. PM3 первоначально предназначался для расчета органических молекул, но потом он был параметризован и для ряда других групп элементов, в частности – и для переходных металлов. Этот метод SCF позволяет наиболее точно воспроизвести межмолекулярные потенциалы.

Метод ZINDO/1 является вариантом метода INDO, адаптированного для проведения расчетов систем, включающих атомы переходных элементов. Эквивалентен последней версии метода INDO/1, который отличается от оригинала использованием постоянных орбитальных экспонент. ZINDO/1 позволяет вычислять энергетику и геометрию систем, содержащих переходные металлы.

Метод ZINDO/S является версией метода INDO, параметризованного для воспроизведения УФ и видимых оптических переходов при расчетах конфигурационного взаимодействия (CI) с одночастичными возбуждениями. Метод полезен для прогнозирования УФ и видимых спектров, но не пригоден для оптимизации геометрии или молекулярной динамики.

В расширенном методе Хюккеля используется отличное от всех остальных полуэмпирических методов диалоговое окно.

Huckel constant – константа Хюккеля пропорциональности между диагональными и недиагональными матричными элементами. Стандартное значение равно 1.75. При определении полной энергии системы более высокие значения константы Хюккеля увеличивают вес перекрывания атомныхорбиталей, а меньшие – увеличивают этот вес.

1 неограниченный метод Хартри-Фока (UHF – Unrestricted Hartree-Fock) рассматривает спинорбитали с различным пространственным распределением для электронов со спином вверх (α) и электронов со спином вниз (β). На каждой орбитали находится один электрон. Этот метод применяется при изучении систем как с открытыми, так и с закрытыми электронными оболочками. Так, для последних он хорошо описывает реакции диссоциации. Однако, из-за удвоения количества орбиталей, время расчета этим методом увеличивается вдвое. У этого метода существуют и другие ограничения, связанные с его основами;

2 в ограниченном методе Хартри-Фока (RHF – Restricted Hartree-Fock) считается, что электроны с различным спином могут попарно занимать одинаковые, в смысле пространственного распределения, орбитали. При этом неспаренные электроны тоже могут занимать отдельные орбитали. Этот метод применяется как для открытых, так и для закрытых электронных оболочек.

Overlap Weighting Factors (фактор перекрывания Вейтинга) – дополнительные параметры для двух ZINDO методов, которые способны изменять вклады σ и π связей. Более подробно этот параметр описан в HyperChem Computational Chemistry, Theory and Methods.

Sigma-Sigma – определяет s-s перекрывание атомныхорбиталей. Обычно он равен 1.0 для ZINDO/1 и 1.67 для ZINDO/S.

Pi-Pi – определяет вес р-р перекрывания атомныхорбиталей. Он равен 1.0 для ZINDO/1. Для ZINDO/S этот параметр равен 0.640 при расчетах комплексов переходных металлов и 0.585 при расчетах органических молекул.

Configuration Interaction (CI конфигурационное взаимодействие – КВ) – эта опция используется для активации расчета конфигурационных взаимодействий и открывает соответствующее диалоговое окно. Такой подход необходимо применять при расчетах УФ и оптических спектров в видимом диапазоне. Выбор этой опции существенно увеличивает время расчетов.

Учет конфигурационного взаимодействия может быть использован для улучшения качества волновой функции и энергии состояния. Все расчеты в приближении самосогласованного поля (SCF) основаны на одноэлектронной модели, суть которой заключается в том, что каждый электрон движется в усредненном поле, которое формируется всеми остальными электронами.
Считается, что электроны взаимодействуют мгновенно и стремятся избегать друг друга согласно принципу Паули. Такая корреляция приводит к понижению среднего межэлектронного отталкивания и, в свою очередь, к понижению энергии состояния. Отличие между полной энергией, рассчитанной в SCF подходе, и энергией, полученной в точно нерелятивистском подходе, называется корреляционной энергией.

Существуют два типа электронных корреляций: статические и динамические. Статические корреляции связаны с энергетическим вырождением данного состояния, а динамические – со стремлением электронов избегать друг друга, что происходит с бесконечно большой скоростью.

КВ (CI) расчеты, возможно, являются наиболее широко распространенным методом выхода за пределы SCF-подхода. Результатом SCF расчета является конфигурация состояния, в котором одноэлектронные уровни жестко заполнены электронами. Другие конфигурации могут быть сформированы из конфигурации, полученной в самосогласованном расчете при помощи возбуждения электронов с занятых на виртуальные (вакантные) орбитали. Результатом КВ расчета является набор улучшенных состояний, каждое из которых представляется линейной комбинацией таких конфигураций. КВ расчеты невозможно проводить в режиме оптимизации геометрии.

КВ расчеты можно использовать при вычислении:

- УФ и видимых спектров;

- энергии возбужденных состояний;

- изучения создания или разрыва химических связей (например, диссоциация H2), изменения спинового состояния;

- описания вырожденных или близких к вырождению состояний;

- изучения расщепления синглет-триплет на более высоком уровне.

Метод микросостояний понижает энергию некоррелированного состояния так же, как и возбужденных состояний. Метод однократного возбуждения электронов (CI) предназначен только для расчетов УФ и видимых спектров и не улучшает энергию основного состояния (теорема Бриллюэна). Чтобы получить корректные результаты, необходимо включить либо все, либо ни одного из наборов вырожденных орбиталей. Необходимо также внимательно использовать «Энергетический критерий». Этот критерий должен быть больше, нежели энергетическая щель между занятыми и вакантными орбиталями (в литературе иногда эту щель называют «запрещенной» зоной, но к этой физической величине это значение не имеет отношения).

В больших системах, как правило, в небольших энергетических интервалах находится большое количество орбиталей. Следовательно, размер CI матрицы может быть очень чувствительным к величине энергетического критерия. Так как время вычислений сильно зависит от размера CI матрицы, необходимый вычислительный ресурс, особенно если использовать методы MNDO, AM1 или PM3, может стать неприемлемо большим. Для того, чтобы избежать такой ситуации, необходимо тщательно проанализировать результаты RHF расчета [58-61].

 








Дата добавления: 2016-07-09; просмотров: 909;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.