Циркуляция металлов
В тигельной печи
Расплавленный металл в индукционной тигельной печи обжимается электромагнитным полем. В средней по высоте части цилиндрического тигля, где не сказывается краевой эффект, силы электродинамического взаимодействия индуктированного тока и магнитного поля индуктора направлены радиально к оси цилиндра и убывают от максимального значения на поверхности до нуля на оси. Создаваемое этими силами давление сжатия возрастает от поверхности к оси [2, 7].
При ярко выраженном поверхностном эффекте, практически всегда имеющем место в тигельной печи, давление сжатия может быть записано в виде:
, (2.2)
где - амплитуда напряженности магнитного поля в зазоре, для индукционных тигельных печей составляет А/м;
- удельная поверхностная мощность, Вт/м2;
- удельное сопротивление расплава, Ом×м.
Следовательно, выражению для может быть придан вид
. (2.3)
Из формулы (2.3) видно, что при неизменной мощности, передаваемой в расплав, силовое воздействие на него усиливается с понижением частоты.
Тигельная печь представляет собой относительно короткую электромагнитную систему (отношение высоты загрузки к диаметру редко превосходит 1,5), поэтому электродинамические силы направлены строго радиально только в средней по высоте части тигля. Ближе к верхнему и нижнему краям тигля, где магнитное поле искажается и линии его не идут параллельно оси, радиальная составляющая электродинамических сил уменьшается, как показано горизонтальными стрелками на рис. 2.7.
Под действием такой системы сил металл в средней части тигля перетекает от периферии к оси, затем по оси тигля выжимается вверх к зеркалу ванны и вниз ко дну тигля. Вверху и внизу он перетекает к стенкам и вдоль стенок возвращается к средней части тигля, совершая так называемую двухконтурную циркуляцию. Сам факт электродинамической циркуляции металла, которая может быть весьма интенсивной, является достоинством индукционной тигельной печи, выгодно отличающим ее от | |
Рис. 2.7. Двухконтурная циркуляция металла в индукционной тигельной печи |
дуговой печи. Циркуляция ускоряет расплавление, выравнивает температуру и химический состав ванны, способствует взаимодействию металла со шлаком.
Однако описанная двухконтурная циркуляция имеет и серьезные недостатки. Во-первых, в каждом из контуров, т. е. в верхней и нижней половинах ванны, металл циркулирует раздельно, слабо смешиваясь. Во-вторых, на поверхности ванны образуется выпуклый мениск, с возрастанием высоты которого приходится увеличивать количество шлака, поскольку он должен полностью покрывать поверхность металла. При этом шлак взаимодействует с огнеупором тигля в широком поясе, разъедая его и способствуя загрязнению ванны. Кроме того, при увеличении количества шлака он получается более холодным, поскольку в индукционной печи шлак нагревается только путем теплопередачи от металла. Понижение температуры шлака замедляет протекание химических реакций и увеличивает продолжительность плавки. Как правило, высота мениска (рис. 2.7) не должна превышать 15 % полной высоты металла по оси тигля.
При радиальном направлении электродинамических сил по всей высоте тигля высота мениска определяется из условия равенства электродинамического давления на оси тигля и гидростатического давления столба металла высотой :
, (2.4)
где - плотность расплава, кг/м3.
При реальной картине поля высота мениска получается несколько меньшей, чем та, что следует из формулы (2.4).
При проектировании индукционных тигельных печей нередко удельную мощность приходится ограничивать из соображений не энергетики, а магнитогидродинамики, так как при увеличении удельной мощности растет и высота мениска, как видно из формулы (2.7). Поэтому в России и за рубежом разрабатываются конструкции и схемы тигельных печей с плоской поверхностью зеркала ванны.
Наиболее распространенный способ уменьшения высоты мениска состоит в расположении верхнего края индуктора ниже зеркала ванны. Этот способ применяется, например, в печах для плавки алюминия, для которых особенно важно ослабить циркуляцию на зеркале ванны, чтобы предотвратить взламывание тугоплавкой окисной пленки. При такой конструкции поле в верхней части ванны ослабляется, и циркуляция вблизи оси тигля не достигает поверхности. В результате зеркало ванны становится почти плоским. Однако эта конструкция имеет существенный недостаток. Ослабление поля в верхней части ванны приводит к снижению выделяющейся в этой зоне мощности, вследствие чего в процессе расплавления куски шихты в верхней части тигля свариваются, образуя «мост», под которым расплавленный металл перегревается. Поэтому в печах с низким расположением индуктора плавку ведут, тщательно осаживая шихту, чтобы не допустить образования мостов.
Предложен ряд схемных решений для улучшения циркуляции металла в индукционной тигельной печи.
Индуктор может быть разбит на несколько секций. В период расплавления включаются все секции, обеспечивая равномерное распределение мощности и быстрое расплавление шихты без образования мостов, в рафинировочный же период плавки верхняя секция отключается, и электродинамическая циркуляция у поверхности ванны ослабляется, высота мениска уменьшается.
Большой интерес представляет двухконтурная схема питания индуктора печи ИП (рис. 2.8), позволяющая перераспределять мощность и электродинамические силы по высоте ванны путем регулирования емкости конденсаторных батарей и , включенных параллельно верхней и нижней половинам индуктора.
Рис. 2.8. Двухконтурная схема питания индуктора тигельной печи | Рис. 2.9. Одноконтурная циркуляция металла в индукционной печи с бегущим полем |
Радикальным решением проблемы улучшения электродинамического перемешивания металла в тигельной печи, правда, ценой значительного усложнения системы ее питания является осуществление одноконтурной циркуляции с помощью бегущего поля. В такой печи металл перемешивается во всем объеме ванны, а поверхность его остается почти плоской (рис. 2.9). Бегущее поле, оказывающее силовое воздействие на расплав, создается многофазным током низкой частоты (16 или 50 Гц), а энергия для нагрева передается в садку на более высокой частоте, т. е. печь является двухчастотной. Нагрев и перемешивание могут производиться одновременно или поочередно. В первом случае используются раздельные индукторы — однофазный для нагрева и многофазный для перемешивания, оборудованные фильтрами для защиты источника одной частоты от проникновения другой частоты. Во втором случае печь имеет один секционированный индуктор, подключаемый поочередно с соответствующими переключениями к различным источникам питания.
Дата добавления: 2016-07-09; просмотров: 852;