Эксплуатация индукционных
Тигельных печей
Индукционные тигельные печи применяются в литейном и металлургическом производстве. В литейном производстве процесс плавки сводится к расплавлению и нагреву до температуры разливки металла, имеющего заданный состав. Рафинировочный период плавки отсутствует, работать желательно при максимальной удельной мощности для увеличения производительности печи.
В металлургическом производстве плавка делится на два этапа: период расплавления и период рафинирования, продолжительность которого определяется скоростью протекания химических реакций и почти не зависит от электрического режима печи.
В металлургии индукционные тигельные печи применяются не только отдельно, но и в дуплекс-процессах с плавильными печами других типов [4, 5]. Экономическая целесообразность этого обусловлена высокой стоимостью расплавления материалов в индукционной печи и малым выгоранием в ней легирующих добавок. Дуплекс-процесс, позволяющий получать большие количества легированной стали, состоит в том, что легирующие элементы расплавляются в индукционной печи и заливаются в мартеновскую или дуговую печь, в которой плавится основная масса металла, и после добавления легирующих присадок производится доводка до заданного состава. Для выплавки легированной стали в меньших количествах (порядка нескольких тонн) применяется другой дуплекс-процесс:
металл расплавляется в дуговой печи и переливается в индукционную печь, в которой проводится лишь рафинировочный период плавки, включающий легирование.
Наконец, индукционные тигельные печи используются в качестве миксеров-копильников, в которые металл сливается из плавильных печей, где он поддерживается в постоянной готовности к разливке в ковши. Индукционные тигельные миксеры работают в режиме минимальной удельной мощности.
Жидкая загрузка применяется не только в дуплекс-процессах и миксерном режиме. Многие современные крупные печи, используемые как самостоятельные плавильные устройства, работают с остаточной емкостью, которая может составлять 60 — 90 % полной емкости тигля.
Преимущества работы с остаточной емкостью:
· отсутствие трудностей, связанных с расплавлением мелкой кусковой шихты,
· увеличение срока службы футеровки в условиях постоянного теплового режима,
· выравнивание состава выплавляемого металла за счет буферного действия остаточной емкости.
Наиболее распространенным типом индукционных печей являются печи средней частоты (500 - 2400 Гц) емкостью 0,06 - 1,0 т, предназначенные для плавки стали, но широко используемые также для плавки чугуна и цветных металлов. Эти печи хорошо вписываются в литейные цехи, они удобны для фасонного литья, когда отбор жидкого металла должен осуществляться мелкими порциями (до 50 - 100 кг). Плавка в этих печах ведется в периодическом режиме с полным сливом металла после каждой плавки.
Отечественной промышленностью выпускаются серийно индукционные тигельные печи различной емкости и мощности для плавки стали (серия ИСТ), чугуна (серии ИЧТ, ИЧТМ), алюминиевых (ИАТ) и медных (ИЛТ) сплавов.
Широкое применение нашли тигельные печи для плавки (серия ИЧТ) и выдержки (серия ИЧТМ) чугуна, в том числе для получения синтетического чугуна из отходов производств.
Для экономичной работы печи при плавке мелкой шихты остаточная емкость тигля должна составлять 60 – 70 % от номинальной емкости (но не менее 25 – 30 %).
Индукционные тигельные печи серии ИАТ предназначены для плавки алюминия и сплавов на его основе. Они выпускаются в двух исполнениях: на промышленной и на средних частотах.
Применение для плавки алюминиевых сплавов индукционных печей средней частоты рекомендуется в тех случаях, когда к металлу предъявляются особые требования по чистоте от окисных и газовых загрязнений. Эти печи конструируются таким образом, чтобы плавка алюминия велась без разрыва защитной поверхностной окисной пленки вследствие циркуляции расплава.
Индукционные тигельные печи промышленной частоты серии ИЛТ предназначены для плавки медных сплавов (медь, латунь, бронза и др.). Печи серии ИЛТ используют как при непрерывном, так и при периодическом режимах работы.
Индукционные плавильные электропечи в силу своей специфики имеют и свои особенности эксплуатации, ведения процесса плавки, выполнения профилактических ремонтов.
Так, в печах промышленной частоты необходимым условием нормальной эксплуатации является работа печи с неполным сливом расплавленного металла, т. е. с остаточной емкостью (с «болотом»). Экспериментально установлено, что с увеличением «болота» производительность печи заметно возрастает. Это объясняется, с одной стороны, улучшением условий теплопередачи от жидкого металла к твердой шихте (благодаря интенсивному движению жидкого металла), а с другой — увеличением потребляемой печью мощности. При одном и том же напряжении мощность, потребляемая печью, пропорциональна величине заполнения тигля жидким металлом (в области рабочих витков индуктора). Наиболее рациональным режимом работы печей промышленной частоты являются частые отборы металла небольшими порциями. Величина этих порций определяется опытным путем, но находится в области 20 – 30 % от емкости тигля.
В печах средней частоты, которые обычно работают с полным сливом металла, производительность во многом зависит от плотности укладки шихты в тигле и ее чистоты. В этом случае (при плотной укладке) потребляется мощность, близкая к номинальной, и плавка по времени производится быстро - близко к расчетному времени.
Ускорения времени плавки можно достичь также периодическим уплотнением шихты, погружая нерасплавленные куски шихты в уже расплавленный металл, а также поддерживая электрический режим на номинальном уровне, т. е. напряжение, сила тока, мощность, должны быть близкими к номинальным значениям. Возможны случаи, когда из-за большой индуктивности, при номинальной силе тока возбуждения генератора, напряжение на печи меньше номинального, в этом случае необходимо поддерживать емкостным.
Возможным приемом ускорения плавки является последовательность загрузки шихты. Например, при выплавке отдельных сплавов алюминия, имеющих температуру плавления, меньшую, чем чистый алюминий (если шихта состоит из возврата и алюминия), вначале следует загружать возврат, а алюминий - в конце плавки. При выплавке синтетического чугуна, например, когда шихта состоит частично из чугунного скрапа и стального лома, стружки и пр., стальная шихта загружается в конце плавки.
При применении указанной технологии загрузки шихты создаются благоприятные условия для стойкости тиглей, так как облегчается температурный режим плавки и уменьшается химическое взаимодействие, между набивной массой тигля и отдельными составляющими шихты.
При эксплуатации индукционных электропечей нужно строго следить за температурным режимом плавки, поскольку даже незначительное (20 - 50° С) превышение температуры против допустимой для данного материала тигля резко уменьшает срок его службы. При расплавлении не следует форсированно перегревать металл выше температуры разливки, так как такой перегрев ведет к размягчению футеровки и ее быстрому разрушению. Кроме того, форсированный (быстрый) перегрев металла с последующим отключением печи для раздачи металла в ковш (часто добиваются такого перегрева металла, чтобы за время простоя печи в ожидании разливки и при самой разливке металл подстуживался не ниже температуры заливки) производится при максимальных мощностях, что сопровождается интенсивным движением металла в ванне печи и, следовательно, повышенным износом (размыванием) тигля, особенно в нижней его части. Это явление особенно заметно на печах промышленной частоты.
Для уменьшения износа футеровки перегрев следует вести до температуры слива (на несколько градусов выше температуры заливки) и затем переключать печь на пониженную мощность (в случае вынужденного простоя и других причин), называемую мощностью холостого хода.
Значительный перегрев металла допускается лишь в отдельных случаях, например, когда тигель печи сильно зашлакован и необходимо произвести его чистку. Допускать зашлаковывания не следует, так как в этом случае уменьшается полезный объем тигля и могут значительно ухудшиться технико-экономические показатели печи. Чистку стенок тигля при эксплуатации печи необходимо осуществлять после каждой плавки. Производиться она должна при наполненном металлом тигле, так как в этом случае шлак размягчен и сравнительно легко счищается. Чистый тигель позволяет также проводить визуальный контроль его состояния (наличие трещин, разрушения и т. д.). При износе тигля (уменьшении толщины стенок) до 20 – 30 % тигель необходимо заменять (перенабивать).
В процессе эксплуатации следует непрерывно наблюдать за режимом охлаждения печи, состоянием электроаппаратуры и своевременно осуществлять профилактические осмотры и ремонты. Одним из необходимых условий нормального режима должно быть поддержание температуры воды на входе в индуктор выше температуры точки росы для данного помещения. В противном случае возможна обильная конденсация водяных паров на трубках индуктора, что приведет к электропробою между витками индуктора и выходу его из строя.
При работе печи опасен и чрезмерный перегрев воды, выходящей из индуктора. В этом случае происходит интенсивное отложение солей (образование накипи) и различных примесей на стенках труб индуктора, что нарушает условия теплообмена между стенкой трубки и охлаждающей водой и ведет к выходу печи из строя.
Образование накипи происходит и при нормальных условиях, поэтому требуется периодическая промывка водоохлаждаемых полостей, например, 40 %-ным раствором соляной кислоты.
Профилактика электрооборудования должна заключаться в периодическом осмотре коммутирующей аппаратуры (реле, магнитных пускателей, контакторов и др.), своевременной зачистке контактов и поддержании в исправности их механической части. Электроизмерительные приборы должны проходить регулярную и периодическую проверку.
Технико-экономические показатели индукционных тигельных печей говорят о высокой эффективности этого оборудования. При плавке алюминия и медных сплавов угар металла сокращается для различных видов шихты и марок сплавов на 30 – 60 % по сравнению с газовыми и мазутными печами; при плавке стали уменьшение расхода легирующих элементов по сравнению с дуговыми печами доходит до 50 % [19]; при выплавке в индукционных печах синтетических чугунов уменьшается в 3 - 4 раза по сравнению с плавкой в вагранках количество растворенных в металле газов, снижается в 1,5 - 2 раза брак по литью, а главное — применяется более дешевая шихта, включающая стальной лом и не содержащая литейного чугуна, что позволяет высвободить часть доменного парка для увеличения выпуска передельного чугуна.
Во всех случаях резко улучшаются условия труда и уменьшается загрязнение окружающей среды.
При эксплуатации плавильных установок с индукционными тигельными печами должны соблюдаться правила техники безопасности для электротехнических установок соответствующего класса. Кроме того, должны быть приняты меры безопасности, связанные со специфическими особенностями тигельных печей.
Основная опасность, возникающая при работе индукционной тигельной печи, заключается в возможности прожога витков водоохлаждаемого индуктора расплавленным металлом при повреждении футеровки. При этом не исключается выброс металла из печи вследствие бурного парообразования или даже взрыв. Для предотвращения аварий такого рода разработаны сигнализаторы состояния футеровки, отключающие питание печи и включающие сигнализацию при появлении трещин в тигле или недопустимом утоньшении его стенок. Действие сигнализатора основано на измерении сопротивления между расплавленным металлом и специальными электродами, запекаемыми в стенку и подину тигля, и на срабатывании реле при уменьшении сопротивления.
Дата добавления: 2016-07-09; просмотров: 3388;