Расчет основных показателей вариации

 

Рассмотрим так называемые абсолютные показатели вариации.

Простейшим из них является размах вариации (амплитуда колебаний).

Размах вариации исчисляется как разница между максимальным и минимальным значениями признака в ряду распределения.

R = Xmax - X min. (7.2.1)

 

В нашем примере у 1-й бригады 5%, у 2-й бригады 30%.

Этот показатель имеет тот недостаток, что он характеризует отклонения только крайних значений и не отражает отклонений всех вариант в ряду, то есть учитывает только крайние значения ранжированного ряда и не связан с частотами. Поэтому нужен показатель, который опирался бы на все значения определенного признака в изучаемой совокупности.


Представим данные нашего примера графически (2-я бригада):

Каждое отдельное наблюдение на какую-то величину не совпадает со средней арифметической. Разность между конкретным отдельным значением признака и средней величиной называется отклонением от средней. Можем ли мы характеризовать колеблемость признака просто просуммировав эти отклонения? Не можем, так как сумма отклонений индивидуальных значений от средней равна 0. Однако мы можем взять эти отклонения по модулю, то есть без учета арифметического знака. В этом случае мы рассчитываем среднее линейное отклонение.

-- --

å ô xi - x ô å ô xi - x ô * fi

Л = ------------------- ; Л = ---------------------- .

n å fi (7.2.2)

 

Этот показатель также имеет недостаток, который заключается в том, что отклонение вариант от средней мы берем по модулю (то есть без учета знака). По этой причине среднее линейное отклонение не дает представления о степени рассеивания значений вокруг средней величины.

Таким образом, мы рассмотрели два показателя, которые характеризуют колеблемость признака, но оба они не лишены недостатков. По этой причине на практике большее применение имеет следующий показатель вариации – среднее квадратическое отклонение.

Меру вариации более объективно отражает показатель дисперсии (s2), определяемый как средняя из отклонений, возведенных в квадрат.

Дисперсия s2 -- средний квадрат отклонений индивидуальных значений

признака от его средней величины.

-- --

å ( xi - x ) 2 å ( xi - x ) 2 * fi

s2= ------------------ ; s2= ---------------------- .

n å fi

(7.2.3)

Корень квадратный из дисперсии представляет собойсреднее квадратическое отклонение: ___

s = Ö s2 . (7.2.4)

Дисперсия (s2) и среднее квадратическое отклонение (s) являются общепринятыми мерами вариации признака.

Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше среднее квадратическое отклонение, тем лучше средняя арифметическая отражает всю представляемую совокупность.

В отличие от размаха вариации, среднего линейного отклонения и среднего квадратического отклонения дисперсия является величиной неименованной.

Средняя величина отражает тенденцию развития, то есть действие главных причин (факторов), среднее квадратическое отклонение измеряет силу воздействия прочих факторов.

 

В статистической практике часто возникает необходимость сравнения вариации различных признаков, например, вариация возраста рабочих и их квалификации, вариация стажа и заработной платы и т.д. В этом случае показатели линейного и квадратического отклонений не годятся, так как нельзя сравнивать, например, колеблемость стажа в годах и колеблемость заработной платы в рублях. Для осуществления такого рода сравнения статистика использует относительные показатели вариации.

 

Общий принцип построения относительного показателя вариации:








Дата добавления: 2016-05-25; просмотров: 638;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.