Температурное поле. Уравнение теплопроводности.
Будем рассматривать только однородные и изотропные тела, т.е. такие тела, которые обладают одинаковыми физическими свойствами по всем направлениям. При передачи теплоты в твердом теле, температура тела будет изменяться по всему объему тела и во времени. Совокупность значений температуры в данный момент времени для всех точек изучаемого пространства называется температурным полем:
t = f(x,y,z,τ) , (9.1)
где:t –температура тела;
x,y,z -координаты точки;
τ - время.
Такое температурное поле называется нестационарным ∂t/∂i ¹ 0, т.е. соответствует неустановившемуся тепловому режиму теплопроводности
Если температура тела функция только координат и не изменяется с течением времени, то температурное поле называется стационарным:
t = f(x,y,z) , ∂t/∂i = 0 (9.2)
Уравнение двухмерного температурного поля:
для нестационарного режима:
t = f(x,y,τ) ; ∂t/∂z = 0 (9.3)
для стационарного режима:
t = f(x,y) , ∂t/∂z = 0; ∂t/∂i = 0 (9.4)
Уравнение одномерного температурного поля:
для нестационарного режима:
t = f(x,τ) ; ∂t/∂y = ∂t/∂z = 0; ∂t/∂i ¹ 0 (9.5)
для стационарного режима:
t = f(x) ; ∂t/∂y = ∂t/∂z = 0; ∂t/∂i = 0 (9.6)
Изотермической поверхностью называется поверхность тела с одинаковыми температурой.
Рассмотрим две изотермические поверхности (Рис.9.1) с температурами t и t + ∆t.Градиентом температуры называют предел отношения изменения температуры∆tк расстоянию между изотермами по нормали ∆n, когда стремится к нулю:
gradt = |gradt| = lim[∆t/∆n]∆n→0 = ∂t/∂n (9.7)
Температурный градиент-это вектор, направленной по нормали к изотермической поверхности в сторону возрастания температуры и численно равный производной температуры t по нормалиn:
gradt = ∂t/∂n no , (9.7*)
где:no –единичный вектор.
Количество теплоты, проходящее через изотермическую поверхность F в единицу времени называется тепловым потоком – Q, [Вт=Дж/с].
Тепловой поток, проходящий через единицу площади называют плотностью теплового потока – q = Q / F, [Вт/м2]
Для твердого тела уравнение теплопроводности подчиняется закону Фурье:
||Тепловой поток, передаваемая теплопроводностью,||пропорциональна градиенту температуры и площади сечения,||перпендикулярного направлению теплового потока.
Q = -λ∙F∙ ∂t/∂n, (9.8)
или
q = -λ ∙ ∂t/∂n ∙no = -λ∙gradt , (9.9)
где: q –вектор плотности теплового потока;
λ – κоэффициент теплопроводности, [Вт/(м∙К)].
Численное значение вектора плотности теплового потока равна:
q = -λ∙ ∂t/∂n = -λ∙|gradt| , (9.10)
где:|gradt|- модуль вектора градиента температуры.
Коэффициент теплопроводности является физическим параметром вещества, характеризующим способность тела проводит теплоту, Она зависит от рода вещества, давления и температуры. Также на её величину влияет влажность вещества. Для большинства веществ коэффициент теплопроводности определяются опытным путем и для технических расчетов берут из справочной литературы.
Дифференциальное уравнение теплопроводности для трехмерного нестационарного температурного поля имеет следующий вид:
, (9.11)
где: а = λ/(ρ·ρ) –коэффициент температуропроводности [м2/с], характеризует скорость изменения температуры.
Для стационарной задачи, дифференциальное уравнение имеет вид:
. (9.12)
Дата добавления: 2016-05-25; просмотров: 477;