ЧАСТНЫЕ ПРОИЗВОДНЫЕ И ДИФФЕРЕНЦИАЛЫ ВЫСШИХ ПОРЯДКОВ Ф.Н.П.
Рассмотрим функцию определенную и дифференцируемую в окрестности точки Тогда в этой окрестности существуют частные производные и являющиеся функциями двух переменных и
Частной производной второго порядка функции в точке называют частную производную по от частной производной , вычисленную в точке :
Частной производной второго порядка называют частную производную по от частной производной в точке :
Аналогично вводят понятия частных производных и Используют и сокращенную форму записи производных:
Частные производные 2-го порядка (если они существуют) являются функциями двух переменных которые в свою очередь можно дифференцировать как по так и по
Получаем «дерево» частных производных высших порядков:
Частные производные, полученные дифференцированием функции по наборам разных переменных, называют смешанными.
Теорема 1. (о смешанных производных).Если функция имеет в некоторой окрестности точки смешанные производные и непрерывные в точке то
Из теоремы 1 следует независимость смешанных производных от порядка дифференцирования. Это теорема обобщается на функции произвольного числа переменных и смеша
нные частные производные любых порядков, больших единицы.
Для иллюстрации этой теоремы рассмотрим пример.
Пример 1. Найти частные производные 3-го порядка и функции
□ Используя «дерево» частных производных, получаем:
Заметим, что функции − непрерывные. Поэтому ■
Пусть функция определена и имеет частные производные до -го порядка включительно в окрестности точки причем в точке все частные производные непрерывны. В этом случае первый дифференциал определен и вычисляется по правилу «цепочки»:
Введем оператор дифференцирования Тогда последнюю формулу можно переписать в виде:
Дифференциал является функцией четырех переменных:
Дифференциалом 2-го порядка функции называется дифференциал дифференциала первого порядка:
Дифференциал 3-го порядка – это дифференциал дифференциала 2-го порядка:
Продолжая рассуждения, введем дифференциал -го порядка как дифференциал дифференциала -го порядка:
Если – независимые переменные, то в точке
Если частные производные непрерывны в точке , то и формула для вычисления второго дифференциала принимает вид:
(1)
С помощью оператора дифференцирования формулу (1) можно переписать в виде:
.
Аналогично для функций, имеющих непрерывные частные производные -го порядка включительно, имеем:
,
Формула вычисления дифференциала произвольного порядка обобщается на функцию имеющую непрерывные частные производные до -го порядка включительно:
Пример 2. Найти второй дифференциал функции
□ Функция и все ее частные производные являются непрерывными функциями. Вычисляем все частные производные до 2-го порядка включительно:
Найденные производные подставляем в формулу (1):
■
Дата добавления: 2016-05-25; просмотров: 864;