Обобщенный метод Ньютона. Оптимизация в электроэнергетических задачах основывается на следующих группах методов:

 

Оптимизация в электроэнергетических задачах основывается на следующих группах методов:

· Методы нулевого порядка.

В них не используются производные. Эти методы наиболее медленные, но обладают простыми алгоритмами (метод случайного поиска, метод покоординатного спуска).

 

· Методы 1-го порядка.

В них используется 1-я производная. Наиболее отработанный и используемый из них - градиентный метод. В нём шаги оптимизации выполняется в направлении антиградиента:

.

Составляющими вектора - градиента являются производные от целевой функции по всем управляющим параметрам.

Методы этой группы обладают надежной и быстрой сходимостью.

 

· Методы 2-го порядка

В них используется 2-я производная. Обладают высокой скоростью сходимости и высокой надежностью.

Суть методов: раскладываем целевую функцию оптимизации F(x) в ряд Тейлора с сохранением производных, включая 2-е производные. При этом выполняется приближенная замена исходной целевой функции F(x) квадратичной (аппроксимирующей) функцией Fоп (разложение Тейлора):

. (1)

Минимизация производится по апроксимирующей функции Fоп, т.е. определяем минимум апроксимирующей функции Fоп вместо поиска минимума F(x) . Неизвестными являются поправки ∆Х.

Минимум функциии определяется равенством нулю производных этой функции по всем неизвестным:

(2)

В целом для n неизвестных ∆Х получаем систему n уравнений:

(3)

Эта система определяем минимум функции Fоп. В матричной форме её мож-но записать:

(4)

или , (5)

(6)

Система (6) – линейна относительно ∆Х. Ее решение позволяет определить поправки ∆Х и выполнить очередной шаг оптимизации:

. (7)

Определив ∆Х решением системы линейных уравнений (6), можем опреде-лить координаты очередной точки на траектории спуска. Для регулирования длины шага в ходе оптимизации возможно введение коэффициента шага h:

(8)

Подставляя в (7) значение ∆Х, полученное из (6), получаем общее выражение методов второго порядка для определения координат точки на траектории спуска:

(9)

 

 








Дата добавления: 2016-05-16; просмотров: 548;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.