Схема базового УМЗЧ
Рассмотрим схему на рис. 8.1. Это схема простейшего транзисторного УМЗЧ, стабилизированного обратной связью, с двуполярным питанием ±15 В.
Рис. 8.1. Классическая схема усилителя звуковой частоты
Усилитель охвачен отрицательной обратной связью (подробнее об обратных связях см. главу 12 ) с выхода на вход. По постоянному току эта обратная связь стопроцентная – т. к. ток через конденсатор С2 не течет, то резистор R4 спокойно можно считать «висящим в воздухе». Таким образом, выход с эмиттеров выходных мощных транзисторов VT4 и VT5 просто присоединен (через резистор R5) ко второму входу дифференциального входного усилителя и имеет практически одинаковый с ним потенциал. Из главы 6 мы знаем, что все эмиттерные и базовые выводы дифференциального усилителя связаны между собой, поэтому на базовом выводе VT2 будет (при отсутствии сигнала) то же напряжение, что и на базе VT1. Последняя привязана к «земле» резистором R1 – т. е. имеет в состоянии покоя нулевой относительно «земли» потенциал. Получается, что выход усилителя (эмиттеры выходных мощных транзисторов) также привязан к этому же потенциалу, следовательно, на выходе в состоянии покоя будет практически нулевое напряжение, и через динамик ток не пойдет.
Ток покоя дифференциального каскада задается резистором R3 и равен примерно 2 мА (учтите, что потенциал соединенных эмиттеров чуть ниже потенциала баз). За счет того, что базы имеют одинаковый потенциал, равны и коллекторные токи VT1 и VT2, т. е. они составляют по 1 мА. Тогда на базе p‑n‑р ‑транзистора VT3, включенного по самой простой схеме усиления с общим эмиттером, за счет резистора R2 потенциал составит как раз величину падения на его переходе база‑эмиттер, и он будет слегка приоткрыт, обеспечивая за счет тока в коллекторе потенциал на резисторе R6 такой, чтобы держать на эмиттерах комплементарных выходных транзисторов (одинаковых, но противоположной полярности: один n‑р‑n , другой p‑n‑р ‑типа), включенных по схеме с общим коллектором, потенциал, равный нулю.
Смысл диодной цепочки между базами выходных транзисторов мы рассмотрим далее.
Подадим на вход какой‑нибудь сигнал в виде переменного напряжения (конденсатор С1 нужен, чтобы не пропускать постоянную составляющую). Переменное напряжение пройдет через конденсатор С1 (ток перезарядки пойдет через резистор R1) и начнет менять потенциал на базе транзистора VT1 (а следовательно, и на его эмиттере). В результате изменится ток коллектора этого транзистора, отчего будет меняться падение напряжения на резисторе R2 и, соответственно, на базе p‑n‑р ‑транзистора VT3. Предположим, что в какой‑то момент времени напряжение на входе возросло. Тогда ток через VT1 увеличится, на резисторе R2 напряжение также возрастет, транзистор VT3 приоткроется, ток его коллектора вырастет. Соответственно вырастет напряжение на резисторе R6 и на соединенных диодной цепочкой базах выходных транзисторов. При этом верхний (по схеме) выходной транзистор VT4 приоткроется, а нижний VT5 – призакроется, отчего напряжение на выходе также сместится в положительную сторону (поскольку пара выходных комплементарных транзисторов, в сущности, представляет собой усложненный эмиттерный повторитель, то сигнал она не инвертирует). При перемене полярности на входе все произойдет в обратную сторону.
Таким образом, входной сигнал передается на выход с неким коэффициентом усиления – как по току, так и по напряжению. Сразу возникает вопрос – а с каким?
И еще вопросы – а зачем здесь нужна, во‑первых, обратная связь, во‑вторых, диоды в базовой цепи выходных транзисторов, и в‑третьих, низкоомные резисторы (R7‑R8) в эмиттерных цепях на выходе?
Давайте начнем с обратной связи. По постоянному току, как мы уже выяснили, обратная связь обеспечивает стабильность выходного напряжения покоя – ток через динамик не идет. Кроме того, эта обратная связь поддерживает в нужном режиме транзистор VT3, который при ее отсутствии, как мы видели в главе 6 , находился бы в исключительно нестабильном состоянии. Что происходит при подаче переменного напряжения на вход? Учитывая, что конденсатор С2 в такой ситуации представляет собой малое сопротивление, часть выходного напряжения (обусловленная цепочкой R5‑R4, т. е., в данном случае, одна тридцатая его) подается обратно на вход дифференциального усилителя в противофазе к входному сигналу, вычитается из него и тем самым его уменьшает. Это могло бы показаться бессмысленной тратой ресурсов, но такое состояние вещей обеспечивает стабильность и предсказуемость схемы – фактически коэффициент усиления этого усилителя по напряжению на звуковых частотах определяется соотношением R5:R4, т. е. стабилен, практически независим от частоты (уже на частоте 10 Гц сопротивление конденсатора С2 не превышает 330 Ом) и равен примерно 30. Добавим, что максимальный достижимый коэффициент усиления при рядовых используемых транзисторах составляет примерно 2–3 тысячи, но без обратной связи эта схема работала бы исключительно нестабильно, – скорее всего, динамик сгорел бы при первом же включении.
У таких схем есть одна нехорошая особенность – из‑за собственных емкостей и индуктивностей участвующих в процессе компонентов (и переходов транзисторов, и резисторов, и проводников в макетном монтаже или на печатной плате) фаза обратной связи за счет задержек в элементах схемы на некоторых частотах (причем даже и много выше звуковых) может меняться с отрицательной на положительную.
Отчего схема начинает «гудеть» при включении питания. «Гудение» это может и не восприниматься на слух, и вы даже не поймете, отчего вдруг выходные резисторы (R7‑R8) чернеют и дымятся, а динамик выдает «чпок», после чего замолкает навсегда. Происходит следующее: малая наводка на вход вызывает сигнал на выходе, который передается опять на вход (базу VT2), но на этот раз не в виде отрицательной обратной связи, когда выходной сигнал вычитается из входного. За счет упомянутых задержек фаза получается такой, что выходной сигнал складывается с входным, и усилитель переходит в режим генерации.
* * *
Заметки на полях
Похожий, но имеющий другие физические причины, эффект может получиться, если вы подключите ко входу усилителя микрофон – звук от динамика попадает обратно в микрофон и усиливается, если он совпадает по фазе. Несомненно, вы не раз встречались с этим «микрофонным эффектом», если пытались наладить систему микрофон‑усилитель в большом зале, и слышали в этом случае нарастающий свист. Для предотвращения микрофонного эффекта иногда достаточно бывает заслонить микрофон рукой или поместить его в поролон, или даже просто изменить полярность подключения динамиков на выходе.
* * *
Предотвращения этих явлений добиваются специальными схемотехническими мерами. Для ограничения коэффициента усиления по высокой частоте в цепь обратной связи включен конденсатор С4 (показан на схеме пунктиром), который ограничивает коэффициент передачи по цепи обратной связи для высоких частот, – чем его номинал больше, тем больше и ограничивает. Поскольку его емкость много меньше, чем конденсатора С2, то коэффициент передачи по цепи обратной связи на звуковых частотах получается более единицы, и усиление хоть и имеет место, но завал усиления на высоких частотах, обеспечиваемый С4 (чем он больше, тем ниже усиление с ростом частоты), предотвращает нежелательное «гудение» усилителя на высоких частотах.
Вторая обязательная мера – правильная разводка питания (см. также главу 9 ). Выходные мощные каскады усиления (спаренный эмиттерный повторитель на комплементарных транзисторах) должны питаться через отдельные достаточно толстые провода (сечением не менее 1 мм2 – чем толще, тем лучше), соединенные прямо с источником питания, а входной дифференциальный каскад и «раскачивающий» транзистор VT3 должны быть также соединены с источником отдельными проводниками. В точках соединения проводника «+15 В» с коллектором VT2, резистором R2, эмиттером VT3 (на плате или макете они должны быть физически как можно ближе друг к другу), как показано на схеме, должны быть установлены «развязывающие» конденсаторы большой емкости. В точке соединения проводников питания с резисторами R2 и R3 желательно также установить «развязывающие» керамические конденсаторы, соединенные с «землей» (на схеме они не показаны). Емкость этих конденсаторов может составлять 0,1–1 мкФ.
«Землю» также следует разводить как можно более толстыми проводниками с аналогичной разводкой. Как можно более толстыми делаются и выходные проводники к динамику. Все соединительные провода в схеме следует делать как можно короче, а вход должен соединяться с входным разъемом и регулирующим резистором экранированным проводом, экран которого будет «землей» входного сигнала.
Для того чтобы понять назначение диодов в базах транзисторов и резисторов в нагрузочной цепи, сначала попробуем ответить еще на два вопроса: какова мощность усилителя, и какие меры нужно принять, чтобы обеспечить прохождение этой мощности через выходные транзисторы и правильно сконструировать усилитель?
Мощность усилителя
Мощность мы будем подсчитывать довольно примитивным способом, считая, что динамическая головка, индуктивность которой не слишком велика, имеет на всех интересующих нас частотах сопротивление, равное ее сопротивлению по постоянному току (в данном случае 4 Ом). Теоретически при полном размахе синусоидального напряжения на выходе усилителя амплитудное значение его может составить 15 В (30 В «от пика до пика»). На самом деле эта величина немного меньше, т. к. минимум два вольта теряется с каждой (положительной и отрицательной) стороны за счет падения напряжения на переходах выходных транзисторов VT4‑VT5, на раскачивающем транзисторе VT3, на резисторах R7‑R8 и т. п. Примем, что максимальная амплитуда на выходе может составить 13 В (при условии неискаженного синусоидального сигнала). Амплитудное значение связано с действующим значением известным нам из главы 4 соотношением, т. е. оно составит в данном случае 13,5/1,41 = 9,2 В. Тогда действующее значение тока составит 9,2 В/4 Ом = 2,3 А, а синусоидальная мощность достигнет 9,2 В·2,3 А = 21 Вт. Следует подчеркнуть, что это максимальная возможная мощность, которую можно выжать из этого усилителя на нагрузке 4 Ом – реальная может быть меньше.
Для того чтобы получить указанный размах напряжения на выходе, в соответствии со значением коэффициента усиления требуется входной сигнал не менее 0,5 В (амплитудного значения), поэтому если вы подключите на вход стандартный микрофон, который обычно выдает не более единиц‑десятков милливольт, такого размаха вы не получите – потребуется еще микрофонный предусилитель. С другой стороны, подключение ко входу, например, выхода с диктофона или плеера вполне может вам обеспечить такой размах и даже более – фактическое выходное напряжение современных источников сигнала составляет не менее 2 В. Следовательно, все выходные компоненты нужно рассчитать так, чтобы они не сгорели при максимальной возможной мощности.
Прежде всего это касается динамической головки. 4 Ом – это довольно стандартное сопротивление для динамиков, но если вы включите сюда головку 4ГД‑4 (т. е. мощностью 4 Вт), то рискуете тем, что при максимальной громкости у вас ее диффузор вместе с толкателем просто улетят в потолок, даже не успев сгореть. Потому головка должна быть рассчитана на нужную мощность. В данном случае необязательно, чтобы был запас по мощности, вполне достаточно колонки на 15 Вт – в реальной музыке или речи максимальные мощности практически никогда не достигаются (подробнее об этом далее), а изредка появляющиеся экстремальные значения такая головка выдержит.
Куда сложнее обеспечить нормальный режим транзисторов. Сначала поговорим о выборе транзисторов выходного каскада. Ток коллектора «раскачивающего» каскада на VT3 равен примерно 10 мА в точке покоя (падение напряжения на резисторе R6 составляет около 15 В), следовательно, чтобы обеспечить 3,3 А на выходе и тем самым полностью использовать возможности источника питания, нужно иметь коэффициент h21э более 230 (именно поэтому выбраны транзисторы с «супербетой»). Есть и другие выходы из такого положения (в том числе позволяющие не терять целых два вольта от питания и при этом обеспечить меньшие искажения сигнала) – предложение которых, одно изящнее другого, стало своеобразным спортом в годы главенства дискретной аналоговой техники, но мы в это углубляться не будем.
Стабильность
Теперь попробуем ответить на ранее заданный вопрос – зачем нужны диоды VD1‑5 (целых пять штук!) между базами выходных транзисторов и резисторы R7‑R8 между их эмиттерами?
Представьте себе, что диодов и резисторов этих не существует, и базы и эмиттеры комплементарных транзисторов просто соединены (рис. 8.2). Будет работать такая схема? Конечно, ведь если один из транзисторов открыт, то другой закрыт, а в промежутке они «перетягивают» друг друга (Хоровиц и Хилл, авторы основополагающего труда «Искусство схемотехники» [5], именно так и называют такой каскад: «push‑pull », т. е. «тяни‑толкай»). Но если на вход подать малый сигнал, то в пределах падения напряжений база‑эмиттер создается мертвая зона, когда ни верхний, ни нижний транзистор не открыты, и оттого на выходном синусоидальном сигнале наличествует довольно большая (примерно в полтора вольта для обычных транзисторов и в три вольта для транзисторов с «супербетой») ступенька, что и показано на рис. 8.2.
Рис. 8.2. Простейший каскад усиления по мощности на комплементарных транзисторах
Для нормального, без хрипов и искажений, воспроизведения звукового сигнала такое, естественно, недопустимо, и выходные транзисторы придется изначально слегка приоткрыть – именно для этого и служит цепочка диодов между базами.
Для обычных транзисторов достаточно трех диодов, для транзисторов с «супербетой» – пяти. Усилитель с таким режимом включения транзисторов еще называют усилителем класса АВ (см. приложение 3 ). При токе около 10 мА, как на схеме, падение напряжения на цепочке диодов превысит падение напряжения между базами транзисторов примерно на полвольта, отчего транзисторы слегка приоткроются, и через соединенные эмиттеры потечет небольшой ток (ток покоя). Теперь достаточно совсем малого сигнала, чтобы он повторился на выходе. Чтобы ток покоя меньше менялся с температурой, диоды следует приклеить или плотно прижать к тому же радиатору, что и транзисторы.
Для достижения наилучшего эффекта можно заменить диоды подстроечным резистором (или добавить его к ним, параллельно или последовательно) и, изменяя его сопротивление, обеспечить нужный ток покоя более точно (для схемы на рис. 8.1 это порядка 50 мА). Подстроечный резистор (рис. 8.3) нужно вращать очень аккуратно, при включенном в эмиттерную цепь нагрузки амперметре, чтобы не превысить ток покоя и не сжечь транзисторы.
Рис. 8.3. Вариант замены диодов на резисторы для установки начального тока покоя
Еще лучше, чем замена диодов резисторами, будет решение с маленьким подстроечным резистором (порядка 100–150 Ом), включенным последовательно с диодами (их тогда понадобится на одну штуку меньше, чем по схеме рис. 8.1). Иногда вместо диодов‑резисторов сооружают источник тока на маломощном транзисторе, что надежнее.
Крупный недостаток всей этой конструкции – то, что при случайном разрыве в базовой цепи транзисторов (например, нарушении контакта в подстроечнике) они оба распахнутся на «полную», и далее все будет происходить в соответствии с цитатой из повести писателя М. Анчарова: «Вы думали, что в аду воняет серой? Ничего подобного – в аду воняет горелой резиной». Потому употреблять подстроечник будет правильным только для макета, а для окончательного варианта нужно все же заменить его соответствующим постоянным резистором. Правда, в аналогичном случае у одного моего знакомого транзистор самостоятельно выпаялся из макета и упал на стол, отчего цепь разорвалась и – что самое удивительное – ничего даже не вышло из строя, в том числе и злополучный транзистор. Когда его, остывшего, посиневшего и полностью потерявшего внешний вид, впаяли обратно – все заработало!
И наконец, зачем на рис. 8.1 показаны низкоомные резисторы R7‑R8 в эмиттерной цепи (на рис. 8.2 и 8.3 они отсутствуют)? Они вносят некоторую долю стабилизирующей обратной связи в выходной каскад с целью лучшей стабилизации тока покоя, т. к. температурные коэффициенты диодов и эмиттерных переходов транзисторов, конечно, не равны в точности. Поскольку при токе 2 А на резисторе 0,5 Ом выделяется 2 Вт (подсчитайте сами!), то эти резисторы проще всего сделать самостоятельно из медной или нихромовой проволоки, как рассказано в главе 2 . Чем выше номинал этих резисторов, тем выше стабильность схемы и тем лучше линейность сигнала, но тем выше и потери мощности.
Дата добавления: 2016-05-11; просмотров: 3131;