Уравнения длинной линии как четырехполюсника
В соответствии с (11) и (12) напряжения и токи в начале и в конце линии связаны между собой соотношениями
;
.
Эти уравнения соответствуют уравнениям симметричного четырехполюсника, коэффициенты которого ; и ; при этом условие выполняется.
Указанное означает, что к длинным линиям могут быть применены элементы теории четырехполюсников, и, следовательно, как всякий симметричный четырехполюсник, длинная линия может быть представлена симметричной Т- или П- образной схемами замещения.
Определение параметров длинной линии из опытов холостого хода и короткого замыкания
Как и у четырехполюсников, параметры длинной линии могут быть определены из опытов холостого хода (ХХ) и короткого замыкания (КЗ).
При ХХ и , откуда входное сопротивление
. | (13) |
При КЗ и . Следовательно,
. | (14) |
На основании (13) и (14)
(15) |
и
,
откуда
. | (16) |
Выражения (15) и (16) на основании данных эксперимента позволяют определить вторичные параметры и линии, по которым затем могут быть рассчитаны ее первичные параметры и .
Линия без потерь
Линией без потерь называется линия, у которой первичные параметры и равны нулю. В этом случае, как было показано ранее, и . Таким образом,
,
откуда .
Раскроем гиперболические функции от комплексного аргумента :
Тогда для линии без потерь, т.е. при , имеют место соотношения:
и .
Таким образом, уравнения длинной линии в гиперболических функциях от комплексного аргумента для линии без потерь трансформируются в уравнения, записанные с использованием круговых тригонометрических функций от вещественного аргумента:
; | (17) |
. | (18) |
Строго говоря, линия без потерь (цепь с распределенными параметрами без потерь) представляет собой идеализированный случай. Однако при выполнении и , что имеет место, например, для высокочастотных цепей, линию можно считать линией без потерь и, следовательно, описывать ее уравнениями (17) и (18).
Дата добавления: 2017-02-04; просмотров: 417;