Задания для самостоятельной работы студента. Изучить материалы обязательной и рекомендуемой литературы, данного раздела учебного пособия.
Изучить материалы обязательной и рекомендуемой литературы, данного раздела учебного пособия.
1. Рассмотреть алгоритм применения дисперсионного анализа на примере решения задачи- эталона.
2. Ответить на контрольные вопросы и тестовые задания.
3. Решить ситуационные задачи.
Блок информации
Дисперсионный анализ- это статистический метод оценки связи между факторными и результативным признаками в различных группах, отобранным случайным образом, основанный на определении различий (разнообразия) значений признаков. В основе дисперсионного анализа лежит анализ отклонений всех единиц исследуемой совокупности от среднего арифметического. В качестве меры отклонений берется дисперсия (D)– средний квадрат отклонений. Отклонения, вызываемые воздействием факторного признака (фактора) сравниваются с величиной отклонений, вызываемых случайными обстоятельствами. Если отклонения, вызываемые факторным признаком, более существенны, чем случайные отклонения, то считается, что фактор оказывает существенное влияние на результативный признак. Для того, чтобы вычислить дисперсию значения отклонений каждой варианты (каждого зарегистрированного числового значения признака) от среднего арифметического возводят в квадрат. Тем самым избавляются от отрицательных знаков. Затем эти отклонения (разности) суммируются и делят на число наблюдений, т.е. усредняют отклонения. Таким образом, получают значения дисперсий.
Важным методическим значением для применения дисперсионного анализа является правильное формирование выборки. В зависимости от поставленной цели и задач выборочные группы могут формироваться случайным образом независимо друг от друга (контрольная и экспериментальная группы для изучения некоторого показателя, например, влияние высокого артериального давления на развитие инсульта). Такие выборки называются независимыми. Нередко результаты воздействия факторов исследуются у одной и той же выборочной группы (например, у одних и тех же пациентов) до и после воздействия (лечение, профилактика, реабилитационные мероприятия), такие выборки называются зависимыми.
Дисперсионный анализ, в котором проверяется влияние одного фактора, называется однофакторным (одномерный анализ). При изучении влияния более чем одного фактора используют многофакторный дисперсионный анализ (многомерный анализ).
Факторные признаки – это те признаки, которые влияют на изучаемое явление.
Результативные признаки – это те признаки, которые изменяются под влиянием факторных признаков.
Для проведения дисперсионного анализа могут использоваться как качественные (пол, профессия), так и количественные признаки ( число инъекций, больных в палате, число койко-дней).
Методыдисперсионного анализа:
1. Метод по Фишеру (Fisher) - критерий F;
2. Метод « общей линейной модели».
Первый метод применяется в однофакторном дисперсионном анализе, когда совокупная дисперсия всех наблюдаемых значений раскладывается на дисперсию внутри отдельных групп и дисперсию между группами.
В основе «обобщенной линейной модели» лежит корреляционный или регрессионный анализ, применяемый в многофакторном анализе.
Обычно в медико-биологических исследованиях используются только однофакторные, максимум двухфакторные дисперсионные комплексы. Многофакторные комплексы можно исследовать, последовательно анализируя одно- или двухфакторные комплексы, выделяемые из всей наблюдаемой совокупности.
Условия применения дисперсионного анализа:
1. Задачей исследования является определение силы влияния одного (до 3-х) факторов на результат или определение силы совместного влияния различных факторов (пол и возраст, физическая активность и питание и т.д.).
2. Изучаемые факторы должны быть независимые (несвязанные) между собой. Например, нельзя изучать совместное влияние стажа работы и возраста, роста и веса детей и т. д. а заболеваемость населения.
3. Подбор групп для исследования проводится рандомизированно (случайный отбор). Организация дисперсионного комплекса с выполнением принципа случайности отбора вариантов называется рандомизацией (перев. с англ.-random), т.е. выбранные наугад.
4. Можно применять как количественные, так и качественные (атрибутивные) признаки.
При проведении однофакторного дисперсионного анализа рекомендуется (необходимое условие применения):
1. Нормальность распределения анализируемых групп или соответствие выборочных групп генеральным совокупностям с нормальным распределением.
2. Независимость (не связанность) распределения наблюдений в группах.
3. Наличие частоты (повторность) наблюдений.
Нормальность распределения определяется кривой Гаусса (Де Мавура), которую можно описать функцией y = ƒ(х), так как относится к числу законов распределения, используемых для приближенного описания явлений, которые носят случайный, вероятностный характер. Предмет медико-биологических исследований – явления вероятностного характера, нормальное распределение в таких исследованиях встречается весьма часто.
Принцип применения метода дисперсионного анализа:
Сначала формулируется нулевая гипотеза, то есть предполагается, что исследуемые факторы не оказывают никакого влияния на значения результативного признака и полученные различия случайны.
Затем мы определяем, какова вероятность получить наблюдаемые (или более сильные) различия при условии справедливости нулевой гипотезы.
Если эта вероятность мала*, то мы отвергаем нулевую гипотезу и заключаем, что результаты исследования статистически значимы. Это еще не означает, что доказано действие именно изучаемых факторов (это вопрос, прежде всего,
планирования исследования), но все же маловероятно, что результат обусловлен случайностью.
При выполнении всех условий применения дисперсионного анализа, разложение общей дисперсии математически выглядит следующим образом:
D общ. = Dфакт.+ Dост.,где
Dобщ – общая дисперсия, наблюдаемых значений (вариант), характеризуется разбросом вариант от общего среднего. Измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловивших эту вариацию.Общее разнообразиескладывается из межгруппового и внутригруппового;
Dфакт.- факторная (межгрупповая) дисперсия, характеризуется различием средних в каждой группе и зависит от влияния исследуемого фактора, по которому дифференцируется каждая группа. Например, в группах различных по этиологическому фактору клинического течения пневмонии средний уровень проведенного койко-дня неодинаков – наблюдается межгрупповое разнообразие.
Dост.- остаточная ( внутригрупповая) дисперсия, которая характеризует рассеяние вариант внутри групп. Отражает случайную вариацию, т.е. часть вариации, происходящую под влиянием неутонченных факторов и не зависящую от признака – фактора, положенного в основание группировки. Вариация изучаемого признака зависит от силы влияния каких-то неучтенных случайных факторов, как от организованных (заданных исследователем),так и от случайных ( неизвестных) факторов.
Поэтому общая вариация (дисперсия) слагается из вариации, вызванной организованными (заданными) факторами, называемые факториальной вариацией и неорганизованными факторами, т.е. остаточнойвариацией ( случайной, неизвестной).
* Максимальную приемлемую вероятность отвергнуть верную нулевую гипотезу называют уровнем значимости и обозначают α = 0,05
Классический дисперсионный анализ проводится по следующим этапам:
1. Построение дисперсионного комплекса;
2. Вычисление средних квадратов отклонений;
3. Вычисление дисперсий;
4. Сравнение факторной и остаточной дисперсий;
5. Оценка результатов с помощью теоретических значений распределения Фишера-Снедекора.
Предлагаем упрощенный вариант классической формулы дисперсии
Дата добавления: 2016-02-16; просмотров: 1229;