Активация свободнорадикальных процессов в клетке

 

Некоторые ксенобиотики, попав во внутренние среды организма, подвергаются метаболическим превращениям, в ходе которых образуются промежуточные продукты (см. раздел “Биотрансформация ксенобиотиков в организме”). Многие промежуточные продукты существуют в форме свободных радикалов, т.е. в форме молекул, на внешней орбитали которых находится неспаренный электрон. Наличие такого электрона делает метаболит способным к активному взаимодействию с различными структурами-мишенями (рисунок 14).

 

 

 

Рисунок 14. Некоторые эффекты свободных радикалов

 

К числу веществ, действие которых может быть обусловлено образованием свободных радикалов, относятся иприты, фосген, четыреххлористый углерод, бенз(а)пирен, паракват и многие другие.

Способность веществ метаболизировать с образованием радикалов обычно связывают с величиной их одноэлектронного восстановительного потенциала. Соединения с высокой афинностью к электрону предрасположены к их акцепции и легко восстанавливаются системами метаболизма ксенобиотиков, в то время как вещества с низким сродством к электрону восстанавливаются биосистемами плохо. В присутствии кислорода восстановленные радикалы спонтанно окисляются до исходной формы, а затем вновь подвергаются восстановлению. Складывается своеобразный окислительно-восстановительный цикл превращения ксенобиотика. Вещества, не вступающие в окислительно-восстановительный цикл не являются источниками образования свободных радикалов в клетках. Например, хлороформ (НССl3) является слабым источником свободных радикалов из-за низкой способности к одноэлектронному восстановлению. Напротив, четыреххлористый углерод (CCl4) легко метаболизирует в трихлорметильный активный радикал (*ССl3) и инициирует каскад радикал-инициирующих реакций.

Превращения молекулы в системе окислительно-восстановительного цикла сопровождается активацией молекулярного кислород путем одновалентного восстановления последнего до супероксид-аниона (О2-*). Супероксид при взаимодействии с водой с большой скоростью дисмутирует с образованием перекиси водорода (Н2О2) и чрезвычайно активного оксиданта - гидроксильного радикала (ОН*). Эти, так называемые, вторичные радикалы представляют большую опасность для клетки, поскольку, обладая достаточной стабильностью, взаимодействуют с самыми разными биомолекулами, повреждают их и провоцируют формирование цепных реакций дальнейшего образования третичных и т.д. активных радикалов из воды, липидов, аминокислот. Интегральный эффект такого каскада радикал-инициирующих реакций приводит к значительному нарушению физиологии клетки, её повреждению (рисунок 15).

 

 

 

Рисунок 15. Окислительно-восстановительный цикл трансформации ксенобиотиков, сопровождающийся активацией свободнорадикальных процессов в клетке

О2* - супероксидный анион; ОН* - гидроксильный радикал

 

Содержание в клетке свободных радикалов жестко контролируются широким спектром как ферментативных, так и неферментативных механизмов антирадикальной защиты. Основными элементами ферментативной защиты являются: супероксиддисмутаза, каталаза, глутатион-пероксидаза, глутатион-редуктаза; неферментативной - a-токоферол, b-каротин, аскорбиновая кислота, восстановленный глутатион, мочевая кислота. Отдельные элементы системы защиты действуют комплексно и потенцируют эффект друг друга. Они локализуются либо в гидрофобных, либо гидрофильных компартментах клеток (например, токоферол - липофилен, глутатион, аскорбиновая кислота - гидрофилны). Результатом действия системы антирадикальной защиты клетки является превращение свободных радикалов в нереакционноспособные вещества. Однако если функционирование окислительно-восстановительного цикла превращения ксенобиотика, проникшего в организм в относительно высокой дозе, будет продолжаться в течение достаточно длительного времени, механизмы клеточной защиты могут истощиться, и произойдет повреждение клетки.

Итогом такого действия является изменение функционального состояния и гибель клетки, мутация её генетического кода, что на уровне макроорганизма приводит к явлению массивной клеточной гибели (некроз), разрастанию соединительной ткани в органе (фиброз), развитию новообразований в отдаленные периоды после действия токсиканта, тератогенезу (рисунок 16).

 

 

Рисунок 16. Активация свободнорадикальных процессов в клетках и их последствия

 

Характер повреждающего действия активных радикалов во многом определяется их стабильностью и расстоянием на которое они могут мигрировать от места своего образования. Наиболее реакционноспособные радикалы (винилгалогены, дигидропиридины) разрушают только образующие их энзимы. Метаболиты, обладающие меньшей реакционной способностью, способны выходить даже за пределы органов, в которых они образуются, и повреждать другие органы и ткани (метаболиты гексана, вызывает периферическую нейропатию, пирролизидиновых алкалоидов мигрируют из печени в легкие, где повреждают сосуды и т.д.).

 








Дата добавления: 2016-04-14; просмотров: 928;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.