Специфика естественных и технических наук
Выявление специфики технических наук осуществляется обычно следующим образом: технические науки сопоставляются с естественными (и общественными) науками и параллельно рассматривается соотношение фундаментальных и прикладных исследований. При этом могут быть выделены следующие позиции:
(1) технические науки отождествляются с прикладным естествознанием;
(2) естественные и технические науки рассматриваются как равноправные научные дисциплины;
(3) в технических науках выделяются как фундаментальные, так и прикладные исследования.
Технические науки и прикладное естествознание
Технические науки нередко отождествляются с прикладным естествознанием[196]. Однако в условиях современного научно-технического развития такое отождествление не соответствует действительности. Технические науки составляют особый класс научных (научно-технических) дисциплин, отличающихся от естественных, хотя между ними существует достаточно тесная связь. Технические науки возникали в качестве прикладных областей исследования естественных наук, используя, но и значительно видоизменяя заимствованные теоретические схемы, развивая исходное знание. Кроме того, это не был единственный способ их возникновения. Важную роль сыграла здесь математика. Нет оснований также считать одни науки более важными и значимыми, чем другие, особенно если нет ясности, что принять за точку отсчета.
По мнению Дж. Агасси, разделение науки на фундаментальную и прикладную по результатам исследования слишком тривиально. "Существует, конечно, пересечение, — писал он. — То исследование, которое известно как фундаментальное и которое является чистой наукой в ближайший отрезок времени, в конце концов применяется. Иными словами, фундаментальное исследование — это поиск некоторых законов природы с учетом использования этих законов'*. Это пересечение показывает, что данное разделение не является единственным, но все же, с точки зрения Лгасси, оно является достаточным, только имеет иное основание. Он выделил в науке два рода проблем — дедуцируемости
и применимости — и показал различия в работе ученых-прикладников и изобретателей. В прикладной науке, в отличие от "чистой", проблемой дедуцируемости является поиск начальных условий, которые вместе с данными теориями дают условия, уточняемые практическим рассмотрением. С его точки зрения, "изобретение — это теория» а не практическая деятельность, хотя и с практическим концом"[197].
Строго говоря, термин "прикладная наука" является некорректным. Обозначая техническую науку в качестве прикладной, исходят обычно из противопоставления "чистой" и прикладной науки. Если цель "чистой" науки — "знать", то прикладной — "делать". В этом случае прикладная наука рассматривается лишь как применение "чистой" науки, которая открывает законы» достигая тем самым понимания и объяснения природы[198]. Однако, такой подход не позволяет определить специфику технических наук, поскольку и естественные, и технические науки могут быть рассмотрены как с точки зрения выработки в них новых знаний, так и с позиции приложения этих знаний для решения каких-либо конкретных задач, в том числе — технических. Кроме того, естественные науки могут быть рассмотрены как сфера приложения ~ например, математики. Иными словами, разделение наук по сфере практического применения является относительным.
По мнению Марио Бунге, разделение наук на "чистые" и прикладные все же имеет определенный смысл: "эта линия должна быть проведена, если мы хотим объяснить различия в точке зрения и мотивации между исследователем, который ищет новый закон природы, и исследователем, который применяет известные законы к проектированию полезных приспособлений: тогда как первый хочет лучше понять вещи, последний желает через них усовершенствовать наше мастерство"[199].
Как показывают конкретные исторические примеры, в реальной жизни очень трудно отделить использование научных знаний от их создания и развития. Как правило, инженеры сознательно или несознательно используют и формулируют общие утверждения или законы; математика выступает для них обычным аналитическим средством и языком. Инженеры постоянно выдвигают гипотезы и проектируют эксперименты для лабораторной
или натурной проверки этих гипотез. Все это обычно маркируется и воспринимается как наука...[200]
Инженеры используют не столько готовые научные знания, сколько научный метод. Кроме того, в самих технических науках постепенно формируется мощный слой фундаментальных исследований, теперь уже фундаментальные исследования с прикладными целями проводятся в интересах самой техники[201]. Всё это показывает условность проводимых границ между фундаментальными и прикладными исследованиями. Поэтому следует говорить о различии фундаментальных и прикладных исследований и в естественных, и в технических науках, а не о противопоставлении фундаментальных и прикладных наук, неизменно относя к первым из них — естественные, а ко вторым — технические науки.
Технические и естественные науки — равноправные партнеры
Сегодня всё большее число философов техники придерживаются той, по нашему мнению, единственно верной точки зрения, что технические и естественные науки должны рассматриваться как равноправные научные дисциплины. Каждая техническая наука — это отдельная и относительно автономная дисциплина, обладающая рядом особенностей. Технические науки — часть науки и, хотя они не должны далеко отрываться от технической практики, не совпадают с ней. Техническая наука обслуживает технику, но является прежде всего наукой, т.е. направлена на получение объективного, поддающегося социальной трансляции знания.
Как показал Э. Лейтон, становление технических наук связано с широким движением в XIX веке — приданием инженерному знанию формы, аналогичной науке. Среди результатов этой тенденции было формирование профессиональных обществ, подобных тем, которые существовали в науке, появление исследовательских журналов, создание исследовательских лабораторий и приспособление математической теории и экспериментальных методов науки к нуждам инженерии[202]. Таким образом, инженеры XX века заимствовали не просто результаты научных исследований, но также методы и социальные институты научного сообщества. С помощью этих средств они смогли сами
генерировать специфические, необходимые для их профессионального сообщества знания. "Современная техника включает ученых, которые "делают" технику и техников, которые работают как ученые". Их работа (если они работают, например, в университете и не выполняют практических обязанностей) является "чистой" наукой, хотя свои результаты они публикуют в соответствующих технических журналах. "Старая точка зрения, что фундаментальная наука генерирует все знания, которые техник затем применяет, просто не помогает в понимании особенностей современной техники"[203].
Действительно, сегодня никого не удивит тот факт, что "целевые исследования, которые проводятся в промышленных лабораториях исследователями, получившими инженерное образование, приводят к важным научным прорывам или что учёные, работающие в университетах или академических центрах, приходят к важным технологическим открытиям"[204]. Поэтому технические науки должны в полной мере рассматриваться как самостоятельные научные дисциплины, наряду с общественными, естественными и математическими науками. Вместе с тем они существенно отличаются от последних по специфике своей связи с техникой,
Технические и естественные науки имеют одну и ту же предметную область инструментально измеримых явлений. Хотя они могут исследовать одни и те же объекты, но проводят исследование этих объектов различным образом.
Технические явления в экспериментальном оборудовании естественных наук играют решающую роль, а большинство физических экспериментов является искусственно созданными ситуациями. Объекты технических наук также представляют собой своеобразный синтез "естественного" и "искусственного". Искусственность объектов технических наук заключается в том, что они являются продуктами сознательной целенаправленной человеческой деятельности. Их естественность обнаруживается прежде всего в том, что все искусственные объекты в конечном итоге создаются из естественного (природного) материала. Естественнонаучные эксперименты являются артефактами, а технические процессы — фактически видоизмененными природными процессами[205]. Осуществление эксперимента — это деятельность по производству технических эффектов и может быть отчасти квалифицирована как инженерная, т.е. как конструирование
машин, как попытка создать искусственные процессы и состояния, однако с целью получения новых научных знаний о природе или подтверждения научных законов, а не исследования закономерностей функционирования и создания самих технических устройств. Поэтому, указывая на инженерный характер физического эксперимента, не следует при этом упускать из вида тот факт» что и современная инженерная деятельность была в значительной степени видоизменена под влиянием развитого в науке Нового времени мысленного эксперимента. Естественнонаучный эксперимент — это не столько конструирование реальной экспериментальной установки, сколько прежде всего идеализированный эксперимент, оперирование с идеальными объектами и схемами. Так, Галилей был не только изобретателем и страстным пропагандистом использования техники в научном исследовании, но он также переосмыслил и преобразовал техническое действие в физике. Быстрое расширение сферы механических искусств "обеспечило новые контролируемые, почти лабораторные ситуации, в которых он мог одним из первых наблюдать естественные явления... ... нелегко различимые в чистом состоянии природы"[206]. Цель физики — изолировать теоретически предсказанное явление, чтобы получить его в чистом виде. Вот почему физические науки открыты для применения в инженерии, а технические устройства могут быть использованы для экспериментов в физике.
Технические науки к началу XX столетия составили сложную иерархическую систему знаний — от весьма систематических наук до собрания правил в инженерных руководствах. Некоторые из них строились непосредственно на естествознании (например, сопротивление материалов и гидравлика) и часто рассматривались в качестве особой отрасли физики, другие (как кинематика механизмов) развивались из непосредственной инженерной практики. И в одном, и в другом случае инженеры заимствовали как теоретические и экспериментальные методы науки, так и многие ценности и институты, связанными с их использованием. К началу XX столетия технические науки, выросшие из практики, приняли качество подлинной науки, признаками которой являются систематическая организация знаний, опора на эксперимент и построение математизированных теорий. В технических науках появились также особые фундаментальные исследования.
Таким образом, естественные и технические науки — равноправные партнеры. Они тесно связаны как в генетическом
аспекте, так и в процессах своего функционирования. Именно из естественных наук в технические были транслированы первые исходные теоретические положения, способы представления объектов исследования и проектирования, основные понятия» а также был заимствован самый идеал научности, установка на теоретическую организацию научно-технических знаний, на построение идеальных моделей, математизацию. В то же время нельзя не видеть, что в технических науках все заимствованные из естествознания элементы претерпели существенную трансформацию, в результате чего и возник новый тип организации теоретического знания. Кроме того, технические науки со своей стороны в значительной степени стимулируют развитие естественных наук, оказывая на них обратное воздействие,
Однако сегодня такой констатации уже недостаточно. Для определения специфики технического знания и технических наук необходимо анализировать их строение. На этой основе может быть затем пересмотрена и углублена и сама классификация наук. Не совсем корректно распространенное утверждение, что основой технических наук является лишь точное естествознание, Это утверждение может быть признано справедливым лишь по отношению к исторически первым техническим наукам. В настоящее время научно-технические дисциплины представляют собой широкий спектр различных дисциплин — от самых абстрактных до весьма специализированных, которые ориентируются на использование знаний не только естественных наук (физики, химии, биологии и т.д.), но и общественных (например, экономики, социологии, психологии и т.п.). Относительно некоторых научно-технических дисциплин вообще трудно сказать, принадлежат ли они к чисто техническим наукам или представляют какое-то новое, более сложное единство науки и техники. Кроме того, некоторые части технических наук могут иметь характер фундаментального, а другие ~- прикладного исследования. Впрочем, то же справедливо и для естественных наук. Творческие и нетворческие элементы имеют место равно как в естественных, так и в технических науках. Нельзя забывать, что сам процесс практического приложения не является однонаправленным процессом, он реализуется как последовательность итераций и связан с выработкой новых знаний.
Фундаментальные я прикладные исследования в технических науках
Прикладное исследование ~ это такое исследование, результаты которого адресованы производителям и заказчикам и которое направляется нуждами или желаниями этих клиентов, фундаментальное — адресовано другим членам научного сообщества. Современная техника не так далека от теории, как это иногда кажется. Она не является только применением существующего научного знания, но имеет творческую компоненту. Поэтому в методологическом плане техническое исследование (т.е. исследование в технической науке) не очень сильно отличается от научного. Дтя современной инженерной деятельности требуются не только краткосрочные исследования, направленные на решение специальных задач, но и широкая долговременная программа фундаментальных исследований в лабораториях и институтах, специально предназначенных для развития технических наук. В то же время современные фундаментальные исследования (особенно в технических науках) более тесно связаны с приложениями, чем это было раньше.
Для современного этапа развития науки и техники характерно использование методов фундаментальных исследований для решения прикладных проблем. Тот факт, что исследование является фундаментальным, еще не означает, что его результаты нсутилитарны. Работа же, направленная на прикладные цели, может быть весьма фундаментальной. Критериями их разделения являются в основном временной фактор и степень общности. Вполне правомерно сегодня говорить'и о фундаментальном промышленном исследовании.
Вспомним имена великих ученых, бывших одновременно инженерами и изобретателями: Д. У. Гиббс — химик-теоретик — начал свою карьеру как механик-изобретатель; Дж. фон Нейман начал как инженер-химик, далее занимался абстрактной математикой и впоследствии опять вернулся к технике; Н. Винер и К. Шеннон были одновременно и инженерами и первоклассными математиками. Список может быть продолжен: Клод Луис Навье, инженер французского Корпуса мостов и дорог, проводил исследования в математике и теоретической механике;
Вильям Томсон (лорд Кельвин) удачно сочетал научную карьеру с постоянными поисками в сфере инженерных и технологических инноваций; физик-теоретик Вильгельм Бьёркнес стал практическим метеорологом...
Хороший техник ищет решения, даже если они еще не полностью приняты наукой, а прикладные исследования и разработки
все более и более выполняются людьми с исходной подготовкой в области фундаментальной науки.
Таким образом, в научно-технических дисциплинах необходимо четко различать исследования, включенные в непосредственную инженерную деятельность (независимо от того, в каких организационных формах они протекают), и теоретические исследования, которые мы будем далее называть технической теорией.
Для того, чтобы выявить особенности технической теории, ее сравнивают прежде всего с естественнонаучной. Г. Сколимовский писал: "техническая теория создает реальность, в то время как научная теория только исследует и объясняет ее"[207]. По мнению Ф. Раппа, решительный поворот в развитии технических наук состоял "в связывании технических знаний с математико-естественнонаучными методами"[208]. Этот автор различает также "гипотетико -дедуктивный метод" (идеализированная абстракция) естественнонаучной теории и "проективно-прагматический метод" (общая схема действия) технической науки[209].
Г. Бёме отмечал, что "техническая теория составляется так, чтобы достичь определенной оптимизации"[210]. Для современной науки характерно ее "ответвление в специальные технические теории". Это происходит за счет построения специальных моделей в двух направлениях: формулировки теорий технических структур и конкретизации общих научных теорий. Можно рассмотреть в качестве примера становление химической технологии как научной дисциплины, где осуществлялась разработка специальных моделей, которые связывали более сложные технические процессы и операции с идеализированными объектами фундаментальной науки. По мнению Бёме, многие первые научные теории были, по сути дела, теориями научных инструментов, т.е. технических устройств; например, физическая оптика — это теория микроскопа и телескопа, пневматика — теория насоса и барометра, а термодинамика — теория паровой машины и двигателя.
Марио Бунге подчеркивал, что в технической науке теория — не только вершина исследовательского цикла и ориентир для дальнейшего исследования, но и основа системы правил, предписывающих ход оптимального технического действия. Такая теория либо рассматривает объекты действия (например, машины), либо относится к самому действию (например, к решениям,
которые предшествуют и управляют производством или использованием машин). Бунге различал также научные законы., описывающие реальность, и технические правила, которые описывают ход действия, указывают, как поступать, чтобы достичь определенной цели (являются инструкцией к выполнению действий). В отличие от закона природы, который говорит о том, какова форма возможных событий,, технические правила являются нормами. В то время, как утверждения, выражающие законы, могут быть более или менее истинными,, правила могут быть более или менее эффективными. Научное предсказание говорит о том, что случится или может случиться при определенных обстоятельствах. Технический прогноз, который исходит из технической теории, формулирует предположение о том, как повлиять на обстоятельства, чтобы могли произойти определенные события или, напротив, их можно было бы предотвратить[211].
Наибольшее различие между физической и технической теориями заключается в характере идеализации; физик может сконцентрировать свое внимание на наиболее простых случаях (например, элиминировать трение, сопротивление жидкости и т.д.), но всё это является весьма существенным для технической теории и должно приниматься ею во внимание. Таким образом, техническая теория имеет дело с более сложной реальностью, поскольку не может элиминировать сложное взаимодействие физических факторов, имеющих место в машине. Техническая теория является менее абстрактной и идеализированной, она более тесно связана с реальным миром инженерии. Специальный когнитивный статус технических теорий выражается в том, что технические теории имеют дело с искусственными устройствами, или артефактами, в то время как научные теории относятся к естественным объектам. Однако противопоставление естественных объектов и артефактов еще не дает реального основания для проводимого различения. Почти все явления, изучаемые современной экспериментальной наукой, созданы в лабораториях и в этом плане представляют собой артефакты.
По мнению Э. Лейтона, техническую теорию создает особый слой посредников — "ученые-инженеры" или "инженеры-ученые". Ибо для того, чтобы информация перешла от одного сообщества (ученых) к другому (инженеров), необходима ее серьезная переформулировка и развитие. Так, Максвелл был одним из тех ученых, которые сознательно пытались сделать вклад в технику (и он действительно оказал на нее большое влияние). Но потребовались почти столь же мощные творческие усилия британского инженера Хэвисайда, чтобы преобразовать
электромагнитные уравнения Максвелла в такую форму, которая могла быть использована инженерами[212]. Таким посредником был, например, шотландский ученый-инженер Рэнкин — ведущая фигура в создании термодинамики и прикладной механики, которому удалось связать практику построения паровых двигателей высокого давления с научными законами. Для такого рода двигателей закон Бойля—Мариотта в чистом виде не применим. Рэнкин доказал необходимость развития промежуточной формы знания — между физикой и техникой. Действия машины должны основываться на теоретических понятиях, а свойства материалов выбираться на основе твердо установленных экспериментальных данных. В паровом двигателе изучаемым материалом был пар, а законы действия были законами создания и исчезновения теплоты, установленными в рамках формальных теоретических понятий. Поэтому работа двигателя в равной мере зависела и от свойств пара (устанавливаемых практически), и от состояния теплоты в этом паре. Рэнкин сконцентрировал свое внимание на том, как законы теплоты влияют на свойства пара. Но в соответствии с его моделью, получалось, что и свойства пара могут изменить действие теплоты. Проведенный анализ действия расширения пара позволил Рэнкину открыть причины потери эффективности двигателей и рекомендовать конкретные мероприятия, уменьшающие негативное действие расширения. Модель технической науки, предложенная Рэнкиным, обеспечила применение теоретических идей к практическим проблемам и привела к образованию новых понятий на основе объединения элементов науки и техники[213].
Технические теории в свою очередь оказывают большое обратное влияние на физическую науку и даже в определенном смысле на всю физическую картину мира. Например, (по сути, — техническая) теория упругости была генетической основой модели эфира, а гидродинамика -- вихревых теорий материи.
Таким образом, в современной философии техники исследователям удалось выявить фундаментальное теоретическое исследование в технических науках и провести первичную классификацию типов технической теории. Разделение исследований в технических науках на фундаментальные и прикладные позволяет выделить и рассматривать техническую теорию в качестве предмета особого философско-метод алогического анализа и перейти к изучению ее внутренней структуры.
Голландский исследователь П. Кроес утверждал, что теория, имеющая дело с артефактами, обязательно претерпевает изменение своей структуры. Он подчеркивал, что естественнонаучные и научно-технические знания являются в равной степени знаниями о манипуляции с природой, что и естественные, и технические науки имеют дело с артефактами и сами создают их. Однако между двумя видами теорий существует также фундаментальное отличие, и оно заключается в том, что в рамках технической теории важнейшее место принадлежит проектным характеристикам и параметрам[214].
Исследование соотношения и взаимосвязи естественных и технических наук направлено также на то, чтобы обосновать возможность использования при анализе технических наук методологических средств, развитых в философии науки в процессе исследования естествознания. При этом в большинстве работ анализируются в основном связи, сходства и различия физической и технической теории (в ее классической форме), которая основана на применении к инженерной практике главным образом физических знаний.
Однако за последние десятилетия возникло множество технических теорий, которые основываются не только на физике и могут быть названы абстрактными техническими теориями (например, системотехника, информатика или теория проектирования), для которых характерно включение в фундаментальные инженерные исследования общей методологии. Для трактовки отдельных сложных явлений в технических разработках могут быть привлечены часто совершенно различные, логически не связанные теории. Такие теоретические исследования становятся по самой своей сути комплексными и непосредственно выходят не только в сферу "природы", но и в сферу "культуры". "Необходимо брать в расчет не только взаимодействие технических разработок с экономическими факторами, но также связь техники с культурными традициями, а также психологическими, историческими и политическими факторами"[215]. Таким образом, мы попадаем в сферу анализа социального контекста научно-технических знаний.
Теперь рассмотрим последовательно:
во-первых, генезис технических теорий классических технических наук и их отличие от физических теорий;
во-вторых, особенности теоретико-методологического синтеза знаний в современных научно-технических дисциплинах и,
в-третьих, развитие современной инженерной деятельности и необходимость социальной оценки техники.
Глава 12
ФИЗИЧЕСКАЯ ТЕОРИЯ И ТЕХНИЧЕСКАЯ ТЕОРИЯ. ГЕНЕЗИС КЛАССИЧЕСКИХ ТЕХНИЧЕСКИХ НАУК
Дата добавления: 2016-04-02; просмотров: 933;